SPLUS J142445.34-254247.1: An R-Process Enhanced, Actinide-Boost, Extremely Metal-Poor star observed with GHOST
We report on the chemo-dynamical analysis of SPLUS J142445.34-254247.1, an extremely metal-poor halo star enhanced in elements formed by the rapid neutron-capture process. This star was first selected as a metal-poor candidate from its narrow-band S-PLUS photometry and followed up spectroscopically...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on the chemo-dynamical analysis of SPLUS J142445.34-254247.1, an extremely metal-poor halo star enhanced in elements formed by the rapid neutron-capture process. This star was first selected as a metal-poor candidate from its narrow-band S-PLUS photometry and followed up spectroscopically in medium-resolution with Gemini South/GMOS, which confirmed its low-metallicity status. High-resolution spectroscopy was gathered with GHOST at Gemini South, allowing for the determination of chemical abundances for 36 elements, from carbon to thorium. At [Fe/H]=-3.39, SPLUS J1424-2542 is one of the lowest metallicity stars with measured Th and has the highest logeps(Th/Eu) observed to date, making it part of the "actinide-boost" category of r-process enhanced stars. The analysis presented here suggests that the gas cloud from which SPLUS J1424-2542 was formed must have been enriched by at least two progenitor populations. The light-element (Z=38) abundance pattern can be reproduced by the yields from a neutron star merger (1.66Msun and 1.27Msun) event. A kinematical analysis also reveals that SPLUS J1424-2542 is a low-mass, old halo star with a likely in-situ origin, not associated with any known early merger events in the Milky Way. |
---|---|
ISSN: | 2331-8422 |