Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction
For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technolo...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2023-11, Vol.109 (3), p.48, Article 48 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 48 |
container_title | Journal of intelligent & robotic systems |
container_volume | 109 |
creator | Dong, Bo Jing, Yusheng Zhu, Xinye Cui, Yiming An, Tianjiao |
description | For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments. |
doi_str_mv | 10.1007/s10846-023-01978-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2882111447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882111447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7f415acd4b1c7acc5eb65188137cdd2272f13f2bc5f126688343d2a905d8b7013</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9Whu5pHMstRHCxVFdB0yeejUaTImU6H-emNHcOfq3sM951z4EDoHcgmEsKsIhBdVRmieEagZz8gBmkDJkixIfYgmpKaQznV1jE5iXBNCal7WE_Q-07If2k-Dl5veaOmUwddGGTcE2bVfRuO5T7vvsLf43uttJwN-8o0f8L10bZ_04EPE1gf8-LaLrZIdXmw30mVh71q6wQSphta7U3RkZRfN2e-copfbm-f5Ils93C3ns1WmcqiHjNkCSql00YBiUqnSNFUJnEPOlNaUMmoht7RRpQVaVZznRa6prEmpecMI5FN0Mfb2wX9sTRzE2m-DSy8F5ZwCQFGw5KKjSwUfYzBW9KHdyLATQMQPVDFCFQmq2EMVJIXyMRST2b2a8Ff9T-obE5N7DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882111447</pqid></control><display><type>article</type><title>Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction</title><source>SpringerNature Journals</source><creator>Dong, Bo ; Jing, Yusheng ; Zhu, Xinye ; Cui, Yiming ; An, Tianjiao</creator><creatorcontrib>Dong, Bo ; Jing, Yusheng ; Zhu, Xinye ; Cui, Yiming ; An, Tianjiao</creatorcontrib><description>For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-023-01978-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive control ; Artificial Intelligence ; Closed loops ; Contact force ; Control ; Control algorithms ; Controllers ; Cooperation ; Decentralized control ; Decomposition ; Dynamic models ; Electrical Engineering ; Engineering ; Human engineering ; Manipulators ; Mechanical Engineering ; Mechatronics ; Neural networks ; Regular Paper ; Robot arms ; Robot control ; Robotics ; Robots ; Sensors ; Subsystems ; Teaching methods ; Tracking control ; Tracking errors ; Uncertainty</subject><ispartof>Journal of intelligent & robotic systems, 2023-11, Vol.109 (3), p.48, Article 48</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7f415acd4b1c7acc5eb65188137cdd2272f13f2bc5f126688343d2a905d8b7013</citedby><cites>FETCH-LOGICAL-c319t-7f415acd4b1c7acc5eb65188137cdd2272f13f2bc5f126688343d2a905d8b7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-023-01978-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-023-01978-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Jing, Yusheng</creatorcontrib><creatorcontrib>Zhu, Xinye</creatorcontrib><creatorcontrib>Cui, Yiming</creatorcontrib><creatorcontrib>An, Tianjiao</creatorcontrib><title>Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments.</description><subject>Adaptive control</subject><subject>Artificial Intelligence</subject><subject>Closed loops</subject><subject>Contact force</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Cooperation</subject><subject>Decentralized control</subject><subject>Decomposition</subject><subject>Dynamic models</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Human engineering</subject><subject>Manipulators</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Regular Paper</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Subsystems</subject><subject>Teaching methods</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9Whu5pHMstRHCxVFdB0yeejUaTImU6H-emNHcOfq3sM951z4EDoHcgmEsKsIhBdVRmieEagZz8gBmkDJkixIfYgmpKaQznV1jE5iXBNCal7WE_Q-07If2k-Dl5veaOmUwddGGTcE2bVfRuO5T7vvsLf43uttJwN-8o0f8L10bZ_04EPE1gf8-LaLrZIdXmw30mVh71q6wQSphta7U3RkZRfN2e-copfbm-f5Ils93C3ns1WmcqiHjNkCSql00YBiUqnSNFUJnEPOlNaUMmoht7RRpQVaVZznRa6prEmpecMI5FN0Mfb2wX9sTRzE2m-DSy8F5ZwCQFGw5KKjSwUfYzBW9KHdyLATQMQPVDFCFQmq2EMVJIXyMRST2b2a8Ff9T-obE5N7DQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Dong, Bo</creator><creator>Jing, Yusheng</creator><creator>Zhu, Xinye</creator><creator>Cui, Yiming</creator><creator>An, Tianjiao</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20231101</creationdate><title>Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction</title><author>Dong, Bo ; Jing, Yusheng ; Zhu, Xinye ; Cui, Yiming ; An, Tianjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7f415acd4b1c7acc5eb65188137cdd2272f13f2bc5f126688343d2a905d8b7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Artificial Intelligence</topic><topic>Closed loops</topic><topic>Contact force</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Cooperation</topic><topic>Decentralized control</topic><topic>Decomposition</topic><topic>Dynamic models</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Human engineering</topic><topic>Manipulators</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Regular Paper</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Subsystems</topic><topic>Teaching methods</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Jing, Yusheng</creatorcontrib><creatorcontrib>Zhu, Xinye</creatorcontrib><creatorcontrib>Cui, Yiming</creatorcontrib><creatorcontrib>An, Tianjiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Bo</au><au>Jing, Yusheng</au><au>Zhu, Xinye</au><au>Cui, Yiming</au><au>An, Tianjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>109</volume><issue>3</issue><spage>48</spage><pages>48-</pages><artnum>48</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-023-01978-0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2023-11, Vol.109 (3), p.48, Article 48 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2882111447 |
source | SpringerNature Journals |
subjects | Adaptive control Artificial Intelligence Closed loops Contact force Control Control algorithms Controllers Cooperation Decentralized control Decomposition Dynamic models Electrical Engineering Engineering Human engineering Manipulators Mechanical Engineering Mechatronics Neural networks Regular Paper Robot arms Robot control Robotics Robots Sensors Subsystems Teaching methods Tracking control Tracking errors Uncertainty |
title | Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Impedance%20Decentralized%20Control%20of%20Modular%20Robot%20Manipulators%20for%20Physical%20Human-robot%20Interaction&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Dong,%20Bo&rft.date=2023-11-01&rft.volume=109&rft.issue=3&rft.spage=48&rft.pages=48-&rft.artnum=48&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-023-01978-0&rft_dat=%3Cproquest_cross%3E2882111447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882111447&rft_id=info:pmid/&rfr_iscdi=true |