Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction

For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2023-11, Vol.109 (3), p.48, Article 48
Hauptverfasser: Dong, Bo, Jing, Yusheng, Zhu, Xinye, Cui, Yiming, An, Tianjiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 48
container_title Journal of intelligent & robotic systems
container_volume 109
creator Dong, Bo
Jing, Yusheng
Zhu, Xinye
Cui, Yiming
An, Tianjiao
description For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments.
doi_str_mv 10.1007/s10846-023-01978-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2882111447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882111447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7f415acd4b1c7acc5eb65188137cdd2272f13f2bc5f126688343d2a905d8b7013</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9Whu5pHMstRHCxVFdB0yeejUaTImU6H-emNHcOfq3sM951z4EDoHcgmEsKsIhBdVRmieEagZz8gBmkDJkixIfYgmpKaQznV1jE5iXBNCal7WE_Q-07If2k-Dl5veaOmUwddGGTcE2bVfRuO5T7vvsLf43uttJwN-8o0f8L10bZ_04EPE1gf8-LaLrZIdXmw30mVh71q6wQSphta7U3RkZRfN2e-copfbm-f5Ils93C3ns1WmcqiHjNkCSql00YBiUqnSNFUJnEPOlNaUMmoht7RRpQVaVZznRa6prEmpecMI5FN0Mfb2wX9sTRzE2m-DSy8F5ZwCQFGw5KKjSwUfYzBW9KHdyLATQMQPVDFCFQmq2EMVJIXyMRST2b2a8Ff9T-obE5N7DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882111447</pqid></control><display><type>article</type><title>Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction</title><source>SpringerNature Journals</source><creator>Dong, Bo ; Jing, Yusheng ; Zhu, Xinye ; Cui, Yiming ; An, Tianjiao</creator><creatorcontrib>Dong, Bo ; Jing, Yusheng ; Zhu, Xinye ; Cui, Yiming ; An, Tianjiao</creatorcontrib><description>For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-023-01978-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive control ; Artificial Intelligence ; Closed loops ; Contact force ; Control ; Control algorithms ; Controllers ; Cooperation ; Decentralized control ; Decomposition ; Dynamic models ; Electrical Engineering ; Engineering ; Human engineering ; Manipulators ; Mechanical Engineering ; Mechatronics ; Neural networks ; Regular Paper ; Robot arms ; Robot control ; Robotics ; Robots ; Sensors ; Subsystems ; Teaching methods ; Tracking control ; Tracking errors ; Uncertainty</subject><ispartof>Journal of intelligent &amp; robotic systems, 2023-11, Vol.109 (3), p.48, Article 48</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7f415acd4b1c7acc5eb65188137cdd2272f13f2bc5f126688343d2a905d8b7013</citedby><cites>FETCH-LOGICAL-c319t-7f415acd4b1c7acc5eb65188137cdd2272f13f2bc5f126688343d2a905d8b7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-023-01978-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-023-01978-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Jing, Yusheng</creatorcontrib><creatorcontrib>Zhu, Xinye</creatorcontrib><creatorcontrib>Cui, Yiming</creatorcontrib><creatorcontrib>An, Tianjiao</creatorcontrib><title>Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments.</description><subject>Adaptive control</subject><subject>Artificial Intelligence</subject><subject>Closed loops</subject><subject>Contact force</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Cooperation</subject><subject>Decentralized control</subject><subject>Decomposition</subject><subject>Dynamic models</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Human engineering</subject><subject>Manipulators</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Regular Paper</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Subsystems</subject><subject>Teaching methods</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9Whu5pHMstRHCxVFdB0yeejUaTImU6H-emNHcOfq3sM951z4EDoHcgmEsKsIhBdVRmieEagZz8gBmkDJkixIfYgmpKaQznV1jE5iXBNCal7WE_Q-07If2k-Dl5veaOmUwddGGTcE2bVfRuO5T7vvsLf43uttJwN-8o0f8L10bZ_04EPE1gf8-LaLrZIdXmw30mVh71q6wQSphta7U3RkZRfN2e-copfbm-f5Ils93C3ns1WmcqiHjNkCSql00YBiUqnSNFUJnEPOlNaUMmoht7RRpQVaVZznRa6prEmpecMI5FN0Mfb2wX9sTRzE2m-DSy8F5ZwCQFGw5KKjSwUfYzBW9KHdyLATQMQPVDFCFQmq2EMVJIXyMRST2b2a8Ff9T-obE5N7DQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Dong, Bo</creator><creator>Jing, Yusheng</creator><creator>Zhu, Xinye</creator><creator>Cui, Yiming</creator><creator>An, Tianjiao</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20231101</creationdate><title>Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction</title><author>Dong, Bo ; Jing, Yusheng ; Zhu, Xinye ; Cui, Yiming ; An, Tianjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7f415acd4b1c7acc5eb65188137cdd2272f13f2bc5f126688343d2a905d8b7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Artificial Intelligence</topic><topic>Closed loops</topic><topic>Contact force</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Cooperation</topic><topic>Decentralized control</topic><topic>Decomposition</topic><topic>Dynamic models</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Human engineering</topic><topic>Manipulators</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Regular Paper</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Subsystems</topic><topic>Teaching methods</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Jing, Yusheng</creatorcontrib><creatorcontrib>Zhu, Xinye</creatorcontrib><creatorcontrib>Cui, Yiming</creatorcontrib><creatorcontrib>An, Tianjiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Bo</au><au>Jing, Yusheng</au><au>Zhu, Xinye</au><au>Cui, Yiming</au><au>An, Tianjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>109</volume><issue>3</issue><spage>48</spage><pages>48-</pages><artnum>48</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-023-01978-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2023-11, Vol.109 (3), p.48, Article 48
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2882111447
source SpringerNature Journals
subjects Adaptive control
Artificial Intelligence
Closed loops
Contact force
Control
Control algorithms
Controllers
Cooperation
Decentralized control
Decomposition
Dynamic models
Electrical Engineering
Engineering
Human engineering
Manipulators
Mechanical Engineering
Mechatronics
Neural networks
Regular Paper
Robot arms
Robot control
Robotics
Robots
Sensors
Subsystems
Teaching methods
Tracking control
Tracking errors
Uncertainty
title Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Impedance%20Decentralized%20Control%20of%20Modular%20Robot%20Manipulators%20for%20Physical%20Human-robot%20Interaction&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Dong,%20Bo&rft.date=2023-11-01&rft.volume=109&rft.issue=3&rft.spage=48&rft.pages=48-&rft.artnum=48&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-023-01978-0&rft_dat=%3Cproquest_cross%3E2882111447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882111447&rft_id=info:pmid/&rfr_iscdi=true