Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction
For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technolo...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2023-11, Vol.109 (3), p.48, Article 48 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments. |
---|---|
ISSN: | 0921-0296 1573-0409 |
DOI: | 10.1007/s10846-023-01978-0 |