RAMPART: RowHammer Mitigation and Repair for Server Memory Systems

RowHammer attacks are a growing security and reliability concern for DRAMs and computer systems as they can induce many bit errors that overwhelm error detection and correction capabilities. System-level solutions are needed as process technology and circuit improvements alone are unlikely to provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Woo, Steven C, Elsasser, Wendy, Hamburg, Mike, Linstadt, Eric, Miller, Michael R, Song, Taeksang, Tringali, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RowHammer attacks are a growing security and reliability concern for DRAMs and computer systems as they can induce many bit errors that overwhelm error detection and correction capabilities. System-level solutions are needed as process technology and circuit improvements alone are unlikely to provide complete protection against RowHammer attacks in the future. This paper introduces RAMPART, a novel approach to mitigating RowHammer attacks and improving server memory system reliability by remapping addresses in each DRAM in a way that confines RowHammer bit flips to a single device for any victim row address. When RAMPART is paired with Single Device Data Correction (SDDC) and patrol scrub, error detection and correction methods in use today, the system can detect and correct bit flips from a successful attack, allowing the memory system to heal itself. RAMPART is compatible with DDR5 RowHammer mitigation features, as well as a wide variety of algorithmic and probabilistic tracking methods. We also introduce BRC-VL, a variation of DDR5 Bounded Refresh Configuration (BRC) that improves system performance by reducing mitigation overhead and show that it works well with probabilistic sampling methods to combat traditional and victim-focused mitigation attacks like Half-Double. The combination of RAMPART, SDDC, and scrubbing enables stronger RowHammer resistance by correcting bit flips from one successful attack. Uncorrectable errors are much less likely, requiring two successful attacks before the memory system is scrubbed.
ISSN:2331-8422