Performance of the Hybrid Approach Using Three Machine Learning Algorithms
One of the essential problems in data mining is the removal of negligible variables from the data set. This paper proposes a hybrid approach that uses rough set theory based algorithms to reduct the attribute selected from the data set and utilize reducts to raise the classification success of three...
Gespeichert in:
Veröffentlicht in: | Pakistan journal of statistics and operation research 2020-04, Vol.16 (2), p.217-224 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the essential problems in data mining is the removal of negligible variables from the data set. This paper proposes a hybrid approach that uses rough set theory based algorithms to reduct the attribute selected from the data set and utilize reducts to raise the classification success of three learning methods; multinomial logistic regression, support vector machines and random forest using 5-fold cross validation. The performance of the hybrid approach is measured by related statistics. The results show that the hybrid approach is effective as its improved accuracy by 6-12% for the three learning methods. |
---|---|
ISSN: | 1816-2711 2220-5810 |
DOI: | 10.18187/pjsor.vl6i2.3069 |