On the second Robin eigenvalue of the Laplacian

We study the Robin eigenvalue problem for the Laplace–Beltrami operator on Riemannian manifolds. Our first result is a comparison theorem for the second Robin eigenvalue on geodesic balls in manifolds whose sectional curvatures are bounded from above. Our second result asserts that geodesic balls in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023-12, Vol.62 (9), Article 256
Hauptverfasser: Li, Xiaolong, Wang, Kui, Wu, Haotian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Robin eigenvalue problem for the Laplace–Beltrami operator on Riemannian manifolds. Our first result is a comparison theorem for the second Robin eigenvalue on geodesic balls in manifolds whose sectional curvatures are bounded from above. Our second result asserts that geodesic balls in nonpositively curved space forms maximize the second Robin eigenvalue among bounded domains of the same volume.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-023-02607-2