On the second Robin eigenvalue of the Laplacian
We study the Robin eigenvalue problem for the Laplace–Beltrami operator on Riemannian manifolds. Our first result is a comparison theorem for the second Robin eigenvalue on geodesic balls in manifolds whose sectional curvatures are bounded from above. Our second result asserts that geodesic balls in...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2023-12, Vol.62 (9), Article 256 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Robin eigenvalue problem for the Laplace–Beltrami operator on Riemannian manifolds. Our first result is a comparison theorem for the second Robin eigenvalue on geodesic balls in manifolds whose sectional curvatures are bounded from above. Our second result asserts that geodesic balls in nonpositively curved space forms maximize the second Robin eigenvalue among bounded domains of the same volume. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-023-02607-2 |