Study of Urban Thermal Environment and Local Circulations of Guangdong‐Hong Kong‐Macao Greater Bay Area Using WRF and Local Climate Zones

The Guangdong‐Hong Kong‐Macao Greater Bay Area (GBA), a cluster of world‐class cities, is undergoing rapid urbanization. However, the heterogeneity of the urban thermal environment resulting from the diversity of urban forms is not yet fully understood. This paper assesses the heterogeneity of the u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2023-10, Vol.128 (20)
Hauptverfasser: Xin, Rui, Li, Xian‐Xiang, Shi, Yurong, Li, Lei, Zhang, Yuejuan, Liu, Chun‐Ho, Dai, Yongjiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Guangdong‐Hong Kong‐Macao Greater Bay Area (GBA), a cluster of world‐class cities, is undergoing rapid urbanization. However, the heterogeneity of the urban thermal environment resulting from the diversity of urban forms is not yet fully understood. This paper assesses the heterogeneity of the urban heat island (UHI) effect in the GBA using the coupled Weather Research and Forecasting (WRF) model/multi‐layer urban canopy and building energy model (BEP/BEM), with high‐resolution local climate zone (LCZ) map as urban land use/land cover data. The average UHI intensity is found to peak at 1.8 ± 0.4°C in the evening, when the average UHI intensity of LCZ 2 can reach a maximum of 2.4 ± 0.58°C. Properly setting air‐conditioning temperatures can effectively prevent the enhancement of the UHI phenomenon at night by the anthropogenic heat (AH) released from air‐conditioning. The UHI‐induced local circulations and enhanced surface roughness inhibit the penetration of sea breezes inland, and surface wind speed decreases in all LCZs, with a maximum change of more than 0.8 m s −1 . However, the increased thermal difference between land and sea leads to enhanced sea breezes offshore, especially in the Pearl River estuary. In addition, a series of sensitivity experiments have been conducted in this paper on initial and boundary conditions, building drag coefficients and urban fractions, which paves the way for further analyzing urban climate in GBA using WRF model and LCZs. With the rapid urbanization of the world, the demand for functional buildings has increased. Along with the diversification of urban forms, the differences in the thermal environment within cities are becoming more and more significant. This study therefore provides an in‐depth study of the urban thermal environment in the Guangdong‐Hong Kong‐Macao Greater Bay Area (GBA) based on numerical simulation and local climate zones (LCZs). It was found that the urban heat island (UHI) intensity in different urban forms has obvious differences, and may vary by 1°C. However, the daily variation trends are similar, all showing a stronger UHI intensity at night than during the day, and reasonable setting of air‐conditioning temperature can effectively mitigate the UHI intensity at night. The UHI‐induced local circulations and enhanced surface roughness weaken the surface wind speed and inhibit the penetration of sea breeze inland, but enhance the sea breezes offshore, especially in the Pearl River estuary. Th
ISSN:2169-897X
2169-8996
DOI:10.1029/2022JD038210