When Leibniz algebras are Nijenhuis?
Leibniz algebras can be seen as a ``non-commutative" analogue of Lie algebras. Nijenhuis operators on Leibniz algebras introduced by Cari\~{n}ena, Grabowski, and Marmo in [J. Phys. A: Math. Gen. 37(2004)] are (1, 1)-tensors with vanishing Nijenhuis torsion. Recently triangular Leibniz bialgebra...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Leibniz algebras can be seen as a ``non-commutative" analogue of Lie algebras. Nijenhuis operators on Leibniz algebras introduced by Cari\~{n}ena, Grabowski, and Marmo in [J. Phys. A: Math. Gen. 37(2004)] are (1, 1)-tensors with vanishing Nijenhuis torsion. Recently triangular Leibniz bialgebras were introduced by Tang and Sheng in [J. Noncommut. Geom. 16(2022)] via the twisting theory of twilled Leibniz algebras. In this paper we find that Leibniz algebras are very closely related to Nijenhuis operators, and prove that a triangular symplectic Leibniz bialgebra together with a dual triangular structure must possess Nijenhuis operators, which makes it possible to study the applications of Nijehhuis operators from the perspective of Leibniz algebras. At the same time, we regain the classical Leibniz Yang-Baxter equation by using the tensor form of classical \(r\)-matrics. At last we give the classification of triangular Leibniz bialgebras of low dimensions. |
---|---|
ISSN: | 2331-8422 |