Self-supervised robust Graph Neural Networks against noisy graphs and noisy labels

In the paper, we first explore a novel problem of training the robust Graph Neural Networks (GNNs) against noisy graphs and noisy labels. To the problem, we propose a general Self-supervised Robust Graph Neural Network framework that consists of three modules: graph structure learning, sample select...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-11, Vol.53 (21), p.25154-25170
Hauptverfasser: Yuan, Jinliang, Yu, Hualei, Cao, Meng, Song, Jianqing, Xie, Junyuan, Wang, Chongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper, we first explore a novel problem of training the robust Graph Neural Networks (GNNs) against noisy graphs and noisy labels. To the problem, we propose a general Self-supervised Robust Graph Neural Network framework that consists of three modules: graph structure learning, sample selection, and self-supervised learning. Specifically, we first employ a graph structure learning approach to obtain an optimal graph structure. Next, using this structure, we use a clustering algorithm to generate pseudo-labels that represent the clusters. We then design a sample selection strategy based on these pseudo-labels to select nodes with clean labels. Additionally, we introduce a self-supervised learning technique where low-level layer parameters are shared with GNNs to predict pseudo-labels. We jointly train the graph structure learning module, the GNNs model, and the self-supervised model. Finally, we conduct extensive experiments on four real-world datasets, demonstrating the superiority of our methods compared with state-of-the-art methods for semi-supervised node classification under noisy graphs and noisy labels.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-023-04836-6