Effect of Cu doping on crystal structure, martensitic transformation, and magnetic properties of Mn2NiGa1−xCux (x = 0–0.7) ribbons

Magnetic shape memory alloys Mn2NiGa1−xCux (x = 0–0.7) melt-spun ribbons were synthesized, and their crystal structure, martensitic transformation, and magnetic and transport properties were studied. In Mn2NiGa1−xCux, unusual composition dependences of these properties were observed: the lattice par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-10, Vol.123 (17)
Hauptverfasser: Li, Jianqiang, Bai, Songwei, Liu, Heyan, Luo, Hongzhi, Meng, Fanbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic shape memory alloys Mn2NiGa1−xCux (x = 0–0.7) melt-spun ribbons were synthesized, and their crystal structure, martensitic transformation, and magnetic and transport properties were studied. In Mn2NiGa1−xCux, unusual composition dependences of these properties were observed: the lattice parameter increases with Cu-doping, though Cu has a smaller atomic radius compared with Ga. The martensitic transformation temperature decreases with increasing Cu content at first and reaches a minimum at x = 0.3 and then increases rapidly as Cu content increases further. The variation tendency of magnetization is just opposite. When Cu content gets higher, a semiconductor-like to metal-like crossover in electron transport properties is observed. The martensite resistivity also changes from lower than that of austenite to higher than that. First-principles calculations indicate that these unusual properties are related to the competing occupation of Cu between A and D sites. Cu-doping can also enhance the metallic bonding in Mn2NiGa1−xCux, which can reduce the intrinsic brittleness and improve their mechanical properties. All this provides a fresh idea and method for the development of NiMn-based solid-state refrigeration materials.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0173708