Effect of Cu doping on crystal structure, martensitic transformation, and magnetic properties of Mn2NiGa1−xCux (x = 0–0.7) ribbons
Magnetic shape memory alloys Mn2NiGa1−xCux (x = 0–0.7) melt-spun ribbons were synthesized, and their crystal structure, martensitic transformation, and magnetic and transport properties were studied. In Mn2NiGa1−xCux, unusual composition dependences of these properties were observed: the lattice par...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2023-10, Vol.123 (17) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetic shape memory alloys Mn2NiGa1−xCux (x = 0–0.7) melt-spun ribbons were synthesized, and their crystal structure, martensitic transformation, and magnetic and transport properties were studied. In Mn2NiGa1−xCux, unusual composition dependences of these properties were observed: the lattice parameter increases with Cu-doping, though Cu has a smaller atomic radius compared with Ga. The martensitic transformation temperature decreases with increasing Cu content at first and reaches a minimum at x = 0.3 and then increases rapidly as Cu content increases further. The variation tendency of magnetization is just opposite. When Cu content gets higher, a semiconductor-like to metal-like crossover in electron transport properties is observed. The martensite resistivity also changes from lower than that of austenite to higher than that. First-principles calculations indicate that these unusual properties are related to the competing occupation of Cu between A and D sites. Cu-doping can also enhance the metallic bonding in Mn2NiGa1−xCux, which can reduce the intrinsic brittleness and improve their mechanical properties. All this provides a fresh idea and method for the development of NiMn-based solid-state refrigeration materials. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0173708 |