A Narrowband Optical Perfect Absorber and Refractive Index Sensor Based on an Epsilon-Near-Zero Metamaterial Using Ag-Ge-Si Nanowires

In this paper, a narrowband optical absorber with an absorption peak of 99.9% at the telecommunication wavelength of 1310 nm is presented. It consists of nanowires composed of five periods of Ag-Ge-Si disks on a Si substrate. The design of the stacks is based on epsilon-near-zero (ENZ) metamaterials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian journal of physics 2023-12, Vol.53 (6), Article 162
Hauptverfasser: Ghafari, Behnoush, Danaie, Mohammad, Afsahi, Majid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a narrowband optical absorber with an absorption peak of 99.9% at the telecommunication wavelength of 1310 nm is presented. It consists of nanowires composed of five periods of Ag-Ge-Si disks on a Si substrate. The design of the stacks is based on epsilon-near-zero (ENZ) metamaterials, which causes this structure to have a relatively small thickness (i.e., thickness < 5 λ , where λ is the working wavelength). By adjusting the thickness of the stacks using the effective medium theory (EMT) model, we have achieve the desired ENZ wavelength. The perfect absorption feature has been obtained by the synergy of resonances of surface plasmon polaritons (SPP) and ENZ modes. The proposed structure has been simulated using the finite difference frequency domain method. The simulation results indicate that the absorption rate remains almost 90% up to an angle of 75° and is insensitive to polarization. Furthermore, by changing the arrangement of the neighboring stacks, we see an increase in the sensitivity of the absorption peak to the refractive index variations of the environment. In general, narrowband absorbers have good potentials for applications such as filtering, sensing, and detecting, which underlines the significance of this work.
ISSN:0103-9733
1678-4448
DOI:10.1007/s13538-023-01374-x