2D graphitic-like gallium nitride and other structural selectivity in confinement at the graphene/SiC interface
Beyond the predictions routinely achievable by first-principles calculations and using metal-organic chemical vapor deposition (MOCVD), we report a GaN monolayer in a buckled geometry obtained in confinement at the graphene/SiC interface. Conductive atomic force microscopy (C-AFM) was used to invest...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2023-10, Vol.25 (41), p.581-5817 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Beyond the predictions routinely achievable by first-principles calculations and using metal-organic chemical vapor deposition (MOCVD), we report a GaN monolayer in a buckled geometry obtained in confinement at the graphene/SiC interface. Conductive atomic force microscopy (C-AFM) was used to investigate vertical current injection across the graphene/SiC interface and to establish the uniformity of the intercalated regions. Scanning transmission electron microscopy (S/TEM) was used for atomic resolution imaging and spectroscopy along the growth direction. The experimentally obtained value of the buckling parameter, 1.01 ± 0.11 Å, adds to the existing knowledge of buckled GaN monolayers, which is based solely on predictive first-principles calculations. Our study reveals a discontinuity in the anticipated stacking sequence attributed to a few-layer graphitic-like GaN structure. Instead, we identify an atomic order suggestive of ultrathin gallium oxide Ga
2
O
3
, whose formation is apparently mediated by dissociative adsorption of oxygen onto the GaN monolayer.
An atomic resolution image of an intercalated structure at a graphene/SiC interface along the growth direction which is determined as a buckled GaN monolayer at the immediate interface with an underlying SiC substrate and ultrathin Ga
2
O
3
on top. |
---|---|
ISSN: | 1466-8033 1466-8033 |
DOI: | 10.1039/d3ce00515a |