Geometric versions of Schwarz’s lemma for spherically convex functions

We prove several sharp distortion and monotonicity theorems for spherically convex functions defined on the unit disk involving geometric quantities such as spherical length, spherical area, and total spherical curvature. These results can be viewed as geometric variants of the classical Schwarz lem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2023-12, Vol.75 (6), p.1780-1799
Hauptverfasser: Kourou, Maria, Roth, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove several sharp distortion and monotonicity theorems for spherically convex functions defined on the unit disk involving geometric quantities such as spherical length, spherical area, and total spherical curvature. These results can be viewed as geometric variants of the classical Schwarz lemma for spherically convex functions.
ISSN:0008-414X
1496-4279
DOI:10.4153/S0008414X22000529