Geometric versions of Schwarz’s lemma for spherically convex functions
We prove several sharp distortion and monotonicity theorems for spherically convex functions defined on the unit disk involving geometric quantities such as spherical length, spherical area, and total spherical curvature. These results can be viewed as geometric variants of the classical Schwarz lem...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2023-12, Vol.75 (6), p.1780-1799 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove several sharp distortion and monotonicity theorems for spherically convex functions defined on the unit disk involving geometric quantities such as spherical length, spherical area, and total spherical curvature. These results can be viewed as geometric variants of the classical Schwarz lemma for spherically convex functions. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/S0008414X22000529 |