Digital Twins for Anomaly Detection in the Industrial Internet of Things: Conceptual Architecture and Proof-of-Concept

Modern cyber-physical systems based on the Industrial Internet of Things (IIoT) can be highly distributed and heterogeneous, and that increases the risk of failures due to misbehavior of interconnected components, or other interaction anomalies. In this paper, we introduce a conceptual architecture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-12, Vol.19 (12), p.1-11
Hauptverfasser: Benedictis, Alessandra De, Flammini, Francesco, Mazzocca, Nicola, Somma, Alessandra, Vitale, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern cyber-physical systems based on the Industrial Internet of Things (IIoT) can be highly distributed and heterogeneous, and that increases the risk of failures due to misbehavior of interconnected components, or other interaction anomalies. In this paper, we introduce a conceptual architecture for IIoT anomaly detection based on the paradigms of Digital Twins (DT) and Autonomic Computing (AC), and we test it through a proof-of-concept of industrial relevance. The architecture is derived from the current state-of-the-art in DT research and leverages on the MAPE-K feedback loop of AC in order to monitor, analyze, plan, and execute appropriate reconfiguration or mitigation strategies based on the detected deviation from prescriptive behavior stored as shared knowledge. We demonstrate the approach and discuss results by using a reference operational scenario of adequate complexity and criticality within the European Railway Traffic Management System.
ISSN:1551-3203
1941-0050
1941-0050
DOI:10.1109/TII.2023.3246983