The Minimal Sum of Squares Over Partitions with a Nonnegative Rank

Motivated by a question of Defant and Propp (Electron J Combin 27:Article P3.51, 2020) regarding the connection between the degrees of noninvertibility of functions and those of their iterates, we address the combinatorial optimization problem of minimizing the sum of squares over partitions of n wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2023-12, Vol.27 (4), p.781-797
1. Verfasser: Fried, Sela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by a question of Defant and Propp (Electron J Combin 27:Article P3.51, 2020) regarding the connection between the degrees of noninvertibility of functions and those of their iterates, we address the combinatorial optimization problem of minimizing the sum of squares over partitions of n with a nonnegative rank. Denoting the sequence of the minima by ( m n ) n ∈ N , we prove that m n = Θ n 4 / 3 . Consequently, we improve by a factor of 2 the lower bound provided by Defant and Propp for iterates of order two.
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-022-00625-z