Uncertainty principles and integral equations associated with a quadratic‐phase wavelet transform

Taking into account a wavelet transform associated with the quadratic‐phase Fourier transform, we obtain several types of uncertainty principles, as well as identify conditions that guarantee the unique solution for a class of integral equations (related with the previous mentioned transforms). Name...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2023-11, Vol.46 (16), p.16574-16595
Hauptverfasser: Castro, L. P., Guerra, R. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Taking into account a wavelet transform associated with the quadratic‐phase Fourier transform, we obtain several types of uncertainty principles, as well as identify conditions that guarantee the unique solution for a class of integral equations (related with the previous mentioned transforms). Namely, we obtain a Heisenberg–Pauli–Weyl‐type uncertainty principle, a logarithmic‐type uncertainty principle, a local‐type uncertainty principle, an entropy‐based uncertainty principle, a Nazarov‐type uncertainty principle, an Amrein–Berthier–Benedicks‐type uncertainty principle, a Donoho–Stark‐type uncertainty principle, a Hardy‐type uncertainty principle, and a Beurling‐type uncertainty principle for such quadratic‐phase wavelet transform. For this, it is crucial to consider a convolution and its consequences in establishing an explicit relation with the quadratic‐phase Fourier transform.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.9462