On the generalized Fourier transform
In this paper, we introduce the theory of a generalized Fourier transform in order to solve differential equations with a generalized fractional derivative, and we state its main properties. In particular, we obtain the new corresponding convolution, inverse and Plancherel formulas, and Hausdorff–Yo...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-11, Vol.46 (16), p.16709-16733 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce the theory of a generalized Fourier transform in order to solve differential equations with a generalized fractional derivative, and we state its main properties. In particular, we obtain the new corresponding convolution, inverse and Plancherel formulas, and Hausdorff–Young type inequality. We show that this generalized Fourier transform is useful in the study of several fractional differential equations (both ordinary and partial differential equations). |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9471 |