Octonions as Clifford-like algebras
The associative Cayley-Dickson algebras over the field of real numbers are also Clifford algebras. The alternative but nonassociative real Cayley-Dickson algebras, notably the octonions and split octonions, share with Clifford algebras an involutary anti-automorphism and a set of mutually anticommut...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The associative Cayley-Dickson algebras over the field of real numbers are also Clifford algebras. The alternative but nonassociative real Cayley-Dickson algebras, notably the octonions and split octonions, share with Clifford algebras an involutary anti-automorphism and a set of mutually anticommutative generators. On the basis of these similarities, we introduce Kingdon algebras: alternative Clifford-like algebras over vector spaces equipped with a symmetric bilinear form. Over three-dimensional vector spaces, our construction quantizes an alternative non-associative analogue of the exterior algebra. The octonions and split octonions, along with other real generalized Cayley-Dickson algebras in Albert's sense, arise as Kingdon algebras. Our construction gives natural characterizations of the octonion and split octonion algebras by a universality property endowing them with a selected superalgebra structure. |
---|---|
ISSN: | 2331-8422 |