Octonions as Clifford-like algebras

The associative Cayley-Dickson algebras over the field of real numbers are also Clifford algebras. The alternative but nonassociative real Cayley-Dickson algebras, notably the octonions and split octonions, share with Clifford algebras an involutary anti-automorphism and a set of mutually anticommut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Depies, Connor M, Smith, Jonathan D H, Ashburn, Mitchell D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The associative Cayley-Dickson algebras over the field of real numbers are also Clifford algebras. The alternative but nonassociative real Cayley-Dickson algebras, notably the octonions and split octonions, share with Clifford algebras an involutary anti-automorphism and a set of mutually anticommutative generators. On the basis of these similarities, we introduce Kingdon algebras: alternative Clifford-like algebras over vector spaces equipped with a symmetric bilinear form. Over three-dimensional vector spaces, our construction quantizes an alternative non-associative analogue of the exterior algebra. The octonions and split octonions, along with other real generalized Cayley-Dickson algebras in Albert's sense, arise as Kingdon algebras. Our construction gives natural characterizations of the octonion and split octonion algebras by a universality property endowing them with a selected superalgebra structure.
ISSN:2331-8422