On the General Position Numbers of Maximal Outerplane Graphs

A set R ⊆ V ( G ) of a graph G is a general position set if any triple set R 0 of R is non-geodesic, that is, no vertex of R 0 lies on any geodesic between the other two vertices of R 0 in G . Let R be the set of general position sets of a graph G . The general position number gp ( G ) of a graph G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2023-11, Vol.46 (6), Article 198
Hauptverfasser: Tian, Jing, Xu, Kexiang, Chao, Daikun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 46
creator Tian, Jing
Xu, Kexiang
Chao, Daikun
description A set R ⊆ V ( G ) of a graph G is a general position set if any triple set R 0 of R is non-geodesic, that is, no vertex of R 0 lies on any geodesic between the other two vertices of R 0 in G . Let R be the set of general position sets of a graph G . The general position number gp ( G ) of a graph G is defined as gp ( G ) = max { | R | : R ∈ R } . In this paper, for an arbitrary maximal outerplane graph G of order at least 7, we prove that gp ( G ) = 3 if and only if G is a straight linear 2-tree. Moreover, we determine the upper bound on the gp-numbers for any maximal outerplane graph and characterize the corresponding extremal graphs.
doi_str_mv 10.1007/s40840-023-01592-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2877958805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877958805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-14fa613f8ce21a8cf927c8c1a543b1ff82f20f137cc2a089f560e3d62055d7083</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9GZ2c1HwYsUrUK1HvQc0jSxLe3umuyC_nujK3hzLnOY550ZHsbOES4RQF2lCnQFHKjkgGJKHI_YiFADrwjkMRsBkuRSgThlk5R2kEtIkoQjdr2si27ji7mvfbT74rlJ227b1MVTf1j5mIomFI_2Y3vIs2Xf-djubZ3xaNtNOmMnwe6Tn_z2MXu9u32Z3fPFcv4wu1lwRwo6jlWwEsugnSe02oUpKacdWlGVKwxBUyAIWCrnyIKeBiHBl2tJIMRagS7H7GLY28bmvfepM7umj3U-aUgrNRVag8gUDZSLTUrRB9PG_Hf8NAjmW5QZRJksyvyIMphD5RBKGa7ffPxb_U_qC9DraTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877958805</pqid></control><display><type>article</type><title>On the General Position Numbers of Maximal Outerplane Graphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tian, Jing ; Xu, Kexiang ; Chao, Daikun</creator><creatorcontrib>Tian, Jing ; Xu, Kexiang ; Chao, Daikun</creatorcontrib><description>A set R ⊆ V ( G ) of a graph G is a general position set if any triple set R 0 of R is non-geodesic, that is, no vertex of R 0 lies on any geodesic between the other two vertices of R 0 in G . Let R be the set of general position sets of a graph G . The general position number gp ( G ) of a graph G is defined as gp ( G ) = max { | R | : R ∈ R } . In this paper, for an arbitrary maximal outerplane graph G of order at least 7, we prove that gp ( G ) = 3 if and only if G is a straight linear 2-tree. Moreover, we determine the upper bound on the gp-numbers for any maximal outerplane graph and characterize the corresponding extremal graphs.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-023-01592-1</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Apexes ; Applications of Mathematics ; Graphs ; Mathematics ; Mathematics and Statistics ; Upper bounds</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2023-11, Vol.46 (6), Article 198</ispartof><rights>The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-14fa613f8ce21a8cf927c8c1a543b1ff82f20f137cc2a089f560e3d62055d7083</cites><orcidid>0000-0002-9376-5226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-023-01592-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-023-01592-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tian, Jing</creatorcontrib><creatorcontrib>Xu, Kexiang</creatorcontrib><creatorcontrib>Chao, Daikun</creatorcontrib><title>On the General Position Numbers of Maximal Outerplane Graphs</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>A set R ⊆ V ( G ) of a graph G is a general position set if any triple set R 0 of R is non-geodesic, that is, no vertex of R 0 lies on any geodesic between the other two vertices of R 0 in G . Let R be the set of general position sets of a graph G . The general position number gp ( G ) of a graph G is defined as gp ( G ) = max { | R | : R ∈ R } . In this paper, for an arbitrary maximal outerplane graph G of order at least 7, we prove that gp ( G ) = 3 if and only if G is a straight linear 2-tree. Moreover, we determine the upper bound on the gp-numbers for any maximal outerplane graph and characterize the corresponding extremal graphs.</description><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Upper bounds</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9GZ2c1HwYsUrUK1HvQc0jSxLe3umuyC_nujK3hzLnOY550ZHsbOES4RQF2lCnQFHKjkgGJKHI_YiFADrwjkMRsBkuRSgThlk5R2kEtIkoQjdr2si27ji7mvfbT74rlJ227b1MVTf1j5mIomFI_2Y3vIs2Xf-djubZ3xaNtNOmMnwe6Tn_z2MXu9u32Z3fPFcv4wu1lwRwo6jlWwEsugnSe02oUpKacdWlGVKwxBUyAIWCrnyIKeBiHBl2tJIMRagS7H7GLY28bmvfepM7umj3U-aUgrNRVag8gUDZSLTUrRB9PG_Hf8NAjmW5QZRJksyvyIMphD5RBKGa7ffPxb_U_qC9DraTY</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Tian, Jing</creator><creator>Xu, Kexiang</creator><creator>Chao, Daikun</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9376-5226</orcidid></search><sort><creationdate>20231101</creationdate><title>On the General Position Numbers of Maximal Outerplane Graphs</title><author>Tian, Jing ; Xu, Kexiang ; Chao, Daikun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-14fa613f8ce21a8cf927c8c1a543b1ff82f20f137cc2a089f560e3d62055d7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Jing</creatorcontrib><creatorcontrib>Xu, Kexiang</creatorcontrib><creatorcontrib>Chao, Daikun</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Jing</au><au>Xu, Kexiang</au><au>Chao, Daikun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the General Position Numbers of Maximal Outerplane Graphs</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>46</volume><issue>6</issue><artnum>198</artnum><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>A set R ⊆ V ( G ) of a graph G is a general position set if any triple set R 0 of R is non-geodesic, that is, no vertex of R 0 lies on any geodesic between the other two vertices of R 0 in G . Let R be the set of general position sets of a graph G . The general position number gp ( G ) of a graph G is defined as gp ( G ) = max { | R | : R ∈ R } . In this paper, for an arbitrary maximal outerplane graph G of order at least 7, we prove that gp ( G ) = 3 if and only if G is a straight linear 2-tree. Moreover, we determine the upper bound on the gp-numbers for any maximal outerplane graph and characterize the corresponding extremal graphs.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s40840-023-01592-1</doi><orcidid>https://orcid.org/0000-0002-9376-5226</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2023-11, Vol.46 (6), Article 198
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_2877958805
source SpringerLink Journals - AutoHoldings
subjects Apexes
Applications of Mathematics
Graphs
Mathematics
Mathematics and Statistics
Upper bounds
title On the General Position Numbers of Maximal Outerplane Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20General%20Position%20Numbers%20of%20Maximal%20Outerplane%20Graphs&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Tian,%20Jing&rft.date=2023-11-01&rft.volume=46&rft.issue=6&rft.artnum=198&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-023-01592-1&rft_dat=%3Cproquest_cross%3E2877958805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877958805&rft_id=info:pmid/&rfr_iscdi=true