On the General Position Numbers of Maximal Outerplane Graphs

A set R ⊆ V ( G ) of a graph G is a general position set if any triple set R 0 of R is non-geodesic, that is, no vertex of R 0 lies on any geodesic between the other two vertices of R 0 in G . Let R be the set of general position sets of a graph G . The general position number gp ( G ) of a graph G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2023-11, Vol.46 (6), Article 198
Hauptverfasser: Tian, Jing, Xu, Kexiang, Chao, Daikun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A set R ⊆ V ( G ) of a graph G is a general position set if any triple set R 0 of R is non-geodesic, that is, no vertex of R 0 lies on any geodesic between the other two vertices of R 0 in G . Let R be the set of general position sets of a graph G . The general position number gp ( G ) of a graph G is defined as gp ( G ) = max { | R | : R ∈ R } . In this paper, for an arbitrary maximal outerplane graph G of order at least 7, we prove that gp ( G ) = 3 if and only if G is a straight linear 2-tree. Moreover, we determine the upper bound on the gp-numbers for any maximal outerplane graph and characterize the corresponding extremal graphs.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-023-01592-1