On the General Position Numbers of Maximal Outerplane Graphs
A set R ⊆ V ( G ) of a graph G is a general position set if any triple set R 0 of R is non-geodesic, that is, no vertex of R 0 lies on any geodesic between the other two vertices of R 0 in G . Let R be the set of general position sets of a graph G . The general position number gp ( G ) of a graph G...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2023-11, Vol.46 (6), Article 198 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A set
R
⊆
V
(
G
)
of a graph
G
is a general position set if any triple set
R
0
of
R
is non-geodesic, that is, no vertex of
R
0
lies on any geodesic between the other two vertices of
R
0
in
G
. Let
R
be the set of general position sets of a graph
G
. The general position number
gp
(
G
)
of a graph
G
is defined as
gp
(
G
)
=
max
{
|
R
|
:
R
∈
R
}
. In this paper, for an arbitrary maximal outerplane graph
G
of order at least 7, we prove that
gp
(
G
)
=
3
if and only if
G
is a straight linear 2-tree. Moreover, we determine the upper bound on the gp-numbers for any maximal outerplane graph and characterize the corresponding extremal graphs. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-023-01592-1 |