Racah Coefficients for the Group SL(2,ℝ)
The paper is devoted to the derivation of a universal integral representation for 6 j -symbols, or Racah coefficients, for the tensor product of three unitary representations of the principle series of the group SL(2, ℝ). The problem of calculating 6 j -symbols admits a natural reformulation in the...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-09, Vol.275 (3), p.289-298 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 3 |
container_start_page | 289 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 275 |
creator | Derkachev, S. E. Ivanov, A. V. |
description | The paper is devoted to the derivation of a universal integral representation for 6
j
-symbols, or Racah coefficients, for the tensor product of three unitary representations of the principle series of the group SL(2, ℝ). The problem of calculating 6
j
-symbols admits a natural reformulation in the language of Feynman diagrams. The original diagram can be significantly simplified and reduced to a basic diagram using the Gorishnii–Isaev method. In the case of representations of the principle series, we obtained a closed expression in the form of the Mellin–Barnes integral for the basic diagram. |
doi_str_mv | 10.1007/s10958-023-06681-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2877467364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771913752</galeid><sourcerecordid>A771913752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368x-2a3d6b69e7c6b4e73607d34a5abffa41f49bb1e58bb63ae869200ac2086648673</originalsourceid><addsrcrecordid>eNp9kc9KAzEQhxdRsFZfwNOCFyum5s9ukj1K0VooCK2eQzadbLe0uzXZQr37Gr6cT2J0hVIoksOE4ftmYH5RdElwn2As7jzBWSoRpgxhziVB26OoQ1LBkBRZehz-WFDEmEhOozPvFzhIXLJOdDPRRs_jQQ3WlqaEqvGxrV3czCEeunqzjqfja3r79fHZO49OrF56uPir3ej18eFl8ITGz8PR4H6MDONyi6hmM57zDITheQKCcSxmLNGpzq3VCbFJlucEUpnnnGmQPKMYa0Ox5DyRXLBudNXOXbv6bQO-UYt646qwUlEpRBIQnuyoQi9BlZWtG6fNqvRG3QtBMsJESgOFDlAFVOD0sq7AlqG9x_cP8OHNYFWag0JvTwhMA9um0Bvv1Wg62WdpyxpXe-_AqrUrV9q9K4LVT4yqjVGFGNVvjGobJNZKPsBVAW53jX-sb0NFm44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877467364</pqid></control><display><type>article</type><title>Racah Coefficients for the Group SL(2,ℝ)</title><source>SpringerNature Journals</source><creator>Derkachev, S. E. ; Ivanov, A. V.</creator><creatorcontrib>Derkachev, S. E. ; Ivanov, A. V.</creatorcontrib><description>The paper is devoted to the derivation of a universal integral representation for 6
j
-symbols, or Racah coefficients, for the tensor product of three unitary representations of the principle series of the group SL(2, ℝ). The problem of calculating 6
j
-symbols admits a natural reformulation in the language of Feynman diagrams. The original diagram can be significantly simplified and reduced to a basic diagram using the Gorishnii–Isaev method. In the case of representations of the principle series, we obtained a closed expression in the form of the Mellin–Barnes integral for the basic diagram.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06681-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Feynman diagrams ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Principles ; Representations ; Symbols ; Tensors</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-09, Vol.275 (3), p.289-298</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c368x-2a3d6b69e7c6b4e73607d34a5abffa41f49bb1e58bb63ae869200ac2086648673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-023-06681-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-023-06681-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Derkachev, S. E.</creatorcontrib><creatorcontrib>Ivanov, A. V.</creatorcontrib><title>Racah Coefficients for the Group SL(2,ℝ)</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The paper is devoted to the derivation of a universal integral representation for 6
j
-symbols, or Racah coefficients, for the tensor product of three unitary representations of the principle series of the group SL(2, ℝ). The problem of calculating 6
j
-symbols admits a natural reformulation in the language of Feynman diagrams. The original diagram can be significantly simplified and reduced to a basic diagram using the Gorishnii–Isaev method. In the case of representations of the principle series, we obtained a closed expression in the form of the Mellin–Barnes integral for the basic diagram.</description><subject>Feynman diagrams</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Principles</subject><subject>Representations</subject><subject>Symbols</subject><subject>Tensors</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc9KAzEQhxdRsFZfwNOCFyum5s9ukj1K0VooCK2eQzadbLe0uzXZQr37Gr6cT2J0hVIoksOE4ftmYH5RdElwn2As7jzBWSoRpgxhziVB26OoQ1LBkBRZehz-WFDEmEhOozPvFzhIXLJOdDPRRs_jQQ3WlqaEqvGxrV3czCEeunqzjqfja3r79fHZO49OrF56uPir3ej18eFl8ITGz8PR4H6MDONyi6hmM57zDITheQKCcSxmLNGpzq3VCbFJlucEUpnnnGmQPKMYa0Ox5DyRXLBudNXOXbv6bQO-UYt646qwUlEpRBIQnuyoQi9BlZWtG6fNqvRG3QtBMsJESgOFDlAFVOD0sq7AlqG9x_cP8OHNYFWag0JvTwhMA9um0Bvv1Wg62WdpyxpXe-_AqrUrV9q9K4LVT4yqjVGFGNVvjGobJNZKPsBVAW53jX-sb0NFm44</recordid><startdate>20230904</startdate><enddate>20230904</enddate><creator>Derkachev, S. E.</creator><creator>Ivanov, A. V.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230904</creationdate><title>Racah Coefficients for the Group SL(2,ℝ)</title><author>Derkachev, S. E. ; Ivanov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368x-2a3d6b69e7c6b4e73607d34a5abffa41f49bb1e58bb63ae869200ac2086648673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Feynman diagrams</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Principles</topic><topic>Representations</topic><topic>Symbols</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derkachev, S. E.</creatorcontrib><creatorcontrib>Ivanov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derkachev, S. E.</au><au>Ivanov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Racah Coefficients for the Group SL(2,ℝ)</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-09-04</date><risdate>2023</risdate><volume>275</volume><issue>3</issue><spage>289</spage><epage>298</epage><pages>289-298</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The paper is devoted to the derivation of a universal integral representation for 6
j
-symbols, or Racah coefficients, for the tensor product of three unitary representations of the principle series of the group SL(2, ℝ). The problem of calculating 6
j
-symbols admits a natural reformulation in the language of Feynman diagrams. The original diagram can be significantly simplified and reduced to a basic diagram using the Gorishnii–Isaev method. In the case of representations of the principle series, we obtained a closed expression in the form of the Mellin–Barnes integral for the basic diagram.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06681-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2023-09, Vol.275 (3), p.289-298 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2877467364 |
source | SpringerNature Journals |
subjects | Feynman diagrams Mathematical analysis Mathematics Mathematics and Statistics Principles Representations Symbols Tensors |
title | Racah Coefficients for the Group SL(2,ℝ) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Racah%20Coefficients%20for%20the%20Group%20SL(2,%E2%84%9D)&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Derkachev,%20S.%20E.&rft.date=2023-09-04&rft.volume=275&rft.issue=3&rft.spage=289&rft.epage=298&rft.pages=289-298&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06681-x&rft_dat=%3Cgale_proqu%3EA771913752%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877467364&rft_id=info:pmid/&rft_galeid=A771913752&rfr_iscdi=true |