Racah Coefficients for the Group SL(2,ℝ)
The paper is devoted to the derivation of a universal integral representation for 6 j -symbols, or Racah coefficients, for the tensor product of three unitary representations of the principle series of the group SL(2, ℝ). The problem of calculating 6 j -symbols admits a natural reformulation in the...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-09, Vol.275 (3), p.289-298 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper is devoted to the derivation of a universal integral representation for 6
j
-symbols, or Racah coefficients, for the tensor product of three unitary representations of the principle series of the group SL(2, ℝ). The problem of calculating 6
j
-symbols admits a natural reformulation in the language of Feynman diagrams. The original diagram can be significantly simplified and reduced to a basic diagram using the Gorishnii–Isaev method. In the case of representations of the principle series, we obtained a closed expression in the form of the Mellin–Barnes integral for the basic diagram. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-023-06681-x |