Racah Coefficients for the Group SL(2,ℝ)

The paper is devoted to the derivation of a universal integral representation for 6 j -symbols, or Racah coefficients, for the tensor product of three unitary representations of the principle series of the group SL(2, ℝ). The problem of calculating 6 j -symbols admits a natural reformulation in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-09, Vol.275 (3), p.289-298
Hauptverfasser: Derkachev, S. E., Ivanov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is devoted to the derivation of a universal integral representation for 6 j -symbols, or Racah coefficients, for the tensor product of three unitary representations of the principle series of the group SL(2, ℝ). The problem of calculating 6 j -symbols admits a natural reformulation in the language of Feynman diagrams. The original diagram can be significantly simplified and reduced to a basic diagram using the Gorishnii–Isaev method. In the case of representations of the principle series, we obtained a closed expression in the form of the Mellin–Barnes integral for the basic diagram.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-023-06681-x