On the boundedness of rough bi-parameter Fourier integral operators
Let the bi-parameter Fourier integral operators be defined by the phase functions φ 1 ( x 1 , ξ ) , φ 2 ( x 2 , ξ ) ∈ L ∞ Φ 2 satisfying the rough non-degeneracy condition and the amplitude a ∈ L p B S ϱ m with m = ( m 1 , m 2 ) ∈ R 2 , ϱ = ( ϱ 1 , ϱ 2 ) ∈ [ 0 , 1 ] × [ 0 , 1 ] . It is proved that i...
Gespeichert in:
Veröffentlicht in: | Journal of pseudo-differential operators and applications 2023-12, Vol.14 (4), Article 66 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let the bi-parameter Fourier integral operators be defined by the phase functions
φ
1
(
x
1
,
ξ
)
,
φ
2
(
x
2
,
ξ
)
∈
L
∞
Φ
2
satisfying the rough non-degeneracy condition and the amplitude
a
∈
L
p
B
S
ϱ
m
with
m
=
(
m
1
,
m
2
)
∈
R
2
,
ϱ
=
(
ϱ
1
,
ϱ
2
)
∈
[
0
,
1
]
×
[
0
,
1
]
. It is proved that if
0
<
r
≤
∞
,
1
≤
p
,
q
≤
∞
,
satisfying the relation
1
r
=
1
q
+
1
p
, then these operators are bounded from
L
q
to
L
r
provided
m
i
<
-
ϱ
i
(
n
-
1
)
2
(
1
s
+
1
min
(
p
,
s
′
)
)
+
n
(
ϱ
i
-
1
)
s
i
=
1
,
2
,
where
s
=
min
(
2
,
p
,
q
)
and
1
s
+
1
s
′
=
1
. |
---|---|
ISSN: | 1662-9981 1662-999X |
DOI: | 10.1007/s11868-023-00559-x |