The Squeezing Function: Exact Computations, Optimal Estimates, and a New Application
We present a new application of the squeezing function s D , using which one may detect when a given bounded pseudoconvex domain D / ⊆ C n , n ≥ 2 , is not biholomorphic to any product domain. One of the ingredients used in establishing this result is also used to give an exact computation of the sq...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2023-12, Vol.33 (12), Article 383 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new application of the squeezing function
s
D
, using which one may detect when a given bounded pseudoconvex domain
D
/
⊆
C
n
,
n
≥
2
, is not biholomorphic to any product domain. One of the ingredients used in establishing this result is also used to give an exact computation of the squeezing function (which is a constant) of any bounded symmetric domain. This extends a computation by Kubota to any Cartesian product of Cartan domains at least one of which is an exceptional domain. Our method circumvents any case-by-case analysis by rank and also provides optimal estimates for the squeezing functions of certain domains. Lastly, we identify a family of bounded domains that are holomorphic homogeneous regular. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-023-01439-y |