The Squeezing Function: Exact Computations, Optimal Estimates, and a New Application

We present a new application of the squeezing function s D , using which one may detect when a given bounded pseudoconvex domain D / ⊆ C n , n ≥ 2 , is not biholomorphic to any product domain. One of the ingredients used in establishing this result is also used to give an exact computation of the sq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2023-12, Vol.33 (12), Article 383
Hauptverfasser: Bharali, Gautam, Borah, Diganta, Gorai, Sushil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new application of the squeezing function s D , using which one may detect when a given bounded pseudoconvex domain D / ⊆ C n , n ≥ 2 , is not biholomorphic to any product domain. One of the ingredients used in establishing this result is also used to give an exact computation of the squeezing function (which is a constant) of any bounded symmetric domain. This extends a computation by Kubota to any Cartesian product of Cartan domains at least one of which is an exceptional domain. Our method circumvents any case-by-case analysis by rank and also provides optimal estimates for the squeezing functions of certain domains. Lastly, we identify a family of bounded domains that are holomorphic homogeneous regular.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-023-01439-y