Effects of Dietary Intake of Medium-chain Triacylglycerols on Energy Restriction-induced Weight Control and Loss of Skeletal Muscle in Rats
Dietary intake of medium-chain triacylglycerols (MCTs) is known to alleviate obesity. MCTs have also been suggested to beneficially influence protein metabolism. This study evaluated the effects of dietary intake of MCTs on energy restriction-induced weight control and loss of skeletal muscle. Rats...
Gespeichert in:
Veröffentlicht in: | Journal of Oleo Science 2023, Vol.72(9), pp.849-858 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dietary intake of medium-chain triacylglycerols (MCTs) is known to alleviate obesity. MCTs have also been suggested to beneficially influence protein metabolism. This study evaluated the effects of dietary intake of MCTs on energy restriction-induced weight control and loss of skeletal muscle. Rats were divided into the following groups: 1) AL-LCT group that received the AIN-93G-based control diet containing long-chain triacylglycerols (LCTs) ad libitum, 2) ER-LCT group fed the control diet with 30% energy restriction, and 3) ER-MCT group fed a diet containing MCTs with 30% energy restriction. After the 4-wk dietary treatment, both energy-restricted groups had significantly lower body weight than the AL-LCT group and rats in the ER-MCT group were significantly lighter than those in the ER-LCT group. In contrast, the extent of energy restriction-induced loss of skeletal muscle was not significantly different between the two energy-restricted groups, resulting in an increase in muscle mass relative to body weight in the ER-MCT group. Despite maintaining the lower body weight, dietary intake of MCTs did not further influence signaling pathways involved in protein synthesis or breakdown. These results suggest that intake of MCTs could be a valuable dietary intervention to maintain a lower body weight and increase relative muscle mass without negative effects on skeletal muscle protein metabolism. |
---|---|
ISSN: | 1345-8957 1347-3352 |
DOI: | 10.5650/jos.ess23061 |