Combustion, emission and radiative performance of diffusion flame: effect of graphene nanoparticles

The present work is an experimental study on the effect of graphene NPs on the combustion, emission and radiative characteristics of diesel fuel. The hot plate experiment results show that the ignition probability of the diesel fuel droplets significantly increases in the presence of graphene nanopa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied nanoscience 2023-09, Vol.13 (9), p.6237-6247
Hauptverfasser: Shams, Zohreh, Moghiman, Mohammad, Baghban, Mojtaba, Pourhoseini, S. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present work is an experimental study on the effect of graphene NPs on the combustion, emission and radiative characteristics of diesel fuel. The hot plate experiment results show that the ignition probability of the diesel fuel droplets significantly increases in the presence of graphene nanoparticles. By adding graphene NPs, the ignition delay of diesel fuel droplets decreases up to 13%. The fuels were burned in an oil burner subsequently, and flame temperature, luminous and thermal radiation and emissions were measured. The maximum flame temperature increases in the presence of graphene NPs. After the maximum temperature point, the lower temperature of the nanofuel flames compared with pure diesel is due to the higher burning rate of nanofuels. As revealed by the measurements, thermal efficiency increases over the base fuel by 10.1% and 12.7% for the mass fraction of 0.05% and 0.1%, respectively. NO emissions do not change significantly in the presence of graphene NPs. More CO is produced by adding graphene nanoparticles. Also, the addition of graphene NPs considerably increases the radiation heat flux. The thermal and luminous radiation increases by about 7% and 9.67% for diesel fuel containing 0.1% graphene NPs.
ISSN:2190-5509
2190-5517
DOI:10.1007/s13204-023-02857-8