Learning A Locally Unified 3D Point Cloud for View Synthesis
In this paper, we explore the problem of 3D point cloud representation-based view synthesis from a set of sparse source views. To tackle this challenging problem, we propose a new deep learning-based view synthesis paradigm that learns a locally unified 3D point cloud from source views. Specifically...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023, Vol.32, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we explore the problem of 3D point cloud representation-based view synthesis from a set of sparse source views. To tackle this challenging problem, we propose a new deep learning-based view synthesis paradigm that learns a locally unified 3D point cloud from source views. Specifically, we first construct sub-point clouds by projecting source views to 3D space based on their depth maps. Then, we learn the locally unified 3D point cloud by adaptively fusing points at a local neighborhood defined on the union of the sub-point clouds. Besides, we also propose a 3D geometry-guided image restoration module to fill the holes and recover high-frequency details of the rendered novel views. Experimental results on three benchmark datasets demonstrate that our method can improve the average PSNR by more than 4 dB while preserving more accurate visual details, compared with state-of-the-art view synthesis methods. The code will be publicly available at https://github.com/mengyou2/PCVS. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2023.3321458 |