Prediction of Wastewater Treatment Plant Effluent Water Quality Using Recurrent Neural Network (RNN) Models
Artificial Intelligence (AI) has recently emerged as a powerful tool with versatile applications spanning various domains. AI replicates human intelligence processes through machinery and computer systems, finding utility in expert systems, image and speech recognition, machine vision, and natural l...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2023-10, Vol.15 (19), p.3325 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Artificial Intelligence (AI) has recently emerged as a powerful tool with versatile applications spanning various domains. AI replicates human intelligence processes through machinery and computer systems, finding utility in expert systems, image and speech recognition, machine vision, and natural language processing (NLP). One notable area with limited exploration pertains to using deep learning models, specifically Recurrent Neural Networks (RNNs), for predicting water quality in wastewater treatment plants (WWTPs). RNNs are purpose-built for handling sequential data, featuring a feedback mechanism. However, standard RNNs may exhibit limitations in accommodating both short-term and long-term dependencies when addressing intricate time series problems. The solution to this challenge lies in adopting Long Short-Term Memory (LSTM) cells, known for their inherent memory management through a ‘forget gate’ mechanism. In general, LSTM architecture demonstrates superior performance. WWTP data represent a historical series influenced by fluctuating environmental conditions. This study employs simple RNNs and LSTM architecture to construct prediction models for effluent parameters, systematically assessing their performance through various training data scenarios and model architectures. The primary objective was to determine the most suitable WWTP dataset model. The study revealed that an epoch setting of 50 and a batch size of 100 yielded the lowest training time and root mean square error (RMSE) values for both RNN and LSTM models. Furthermore, when these models are applied to predict effluent parameters, they exhibit precise RMSE values for all parameters. The study results can be applied to detect potential upsets in WWTP operations. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w15193325 |