(L^{p}-\)estimates for uncentered spherical averages and lacunary maximal functions
The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain \(L^p\)-estimates for uncentered bilinear maximal functions for dimensions \(d\geq2\). Moreover, we al...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bhojak, Ankit Surjeet Singh Choudhary Shrivastava, Saurabh Shuin, Kalachand |
description | The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain \(L^p\)-estimates for uncentered bilinear maximal functions for dimensions \(d\geq2\). Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove \(L^p\)-improving properties for single scale averaging operators and \(L^p\)-estimates for lacunary maximal functions in this context. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2876187331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876187331</sourcerecordid><originalsourceid>FETCH-proquest_journals_28761873313</originalsourceid><addsrcrecordid>eNqNjrsKwjAYhYMgWLTvEHDRodAmve2iOLjpKJaf9q-2pEnNRRTx3c3gAzid4Xwf50xIwDhPojJlbEZCY_o4jllesCzjATmuDpf3-InOazS2G8Cioa3S1MkapUWNDTXjDXVXg6DwQA1XT4BsqIDaSdAvOsDTi4K23rGdkmZBpi0Ig-Ev52S52542-2jU6u78TtUrp6WvKlYWeVIW_h__j_oCeH1AwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876187331</pqid></control><display><type>article</type><title>(L^{p}-\)estimates for uncentered spherical averages and lacunary maximal functions</title><source>Free E- Journals</source><creator>Bhojak, Ankit ; Surjeet Singh Choudhary ; Shrivastava, Saurabh ; Shuin, Kalachand</creator><creatorcontrib>Bhojak, Ankit ; Surjeet Singh Choudhary ; Shrivastava, Saurabh ; Shuin, Kalachand</creatorcontrib><description>The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain \(L^p\)-estimates for uncentered bilinear maximal functions for dimensions \(d\geq2\). Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove \(L^p\)-improving properties for single scale averaging operators and \(L^p\)-estimates for lacunary maximal functions in this context.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Estimates ; Operators (mathematics)</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bhojak, Ankit</creatorcontrib><creatorcontrib>Surjeet Singh Choudhary</creatorcontrib><creatorcontrib>Shrivastava, Saurabh</creatorcontrib><creatorcontrib>Shuin, Kalachand</creatorcontrib><title>(L^{p}-\)estimates for uncentered spherical averages and lacunary maximal functions</title><title>arXiv.org</title><description>The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain \(L^p\)-estimates for uncentered bilinear maximal functions for dimensions \(d\geq2\). Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove \(L^p\)-improving properties for single scale averaging operators and \(L^p\)-estimates for lacunary maximal functions in this context.</description><subject>Estimates</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjrsKwjAYhYMgWLTvEHDRodAmve2iOLjpKJaf9q-2pEnNRRTx3c3gAzid4Xwf50xIwDhPojJlbEZCY_o4jllesCzjATmuDpf3-InOazS2G8Cioa3S1MkapUWNDTXjDXVXg6DwQA1XT4BsqIDaSdAvOsDTi4K23rGdkmZBpi0Ig-Ev52S52542-2jU6u78TtUrp6WvKlYWeVIW_h__j_oCeH1AwA</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Bhojak, Ankit</creator><creator>Surjeet Singh Choudhary</creator><creator>Shrivastava, Saurabh</creator><creator>Shuin, Kalachand</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240827</creationdate><title>(L^{p}-\)estimates for uncentered spherical averages and lacunary maximal functions</title><author>Bhojak, Ankit ; Surjeet Singh Choudhary ; Shrivastava, Saurabh ; Shuin, Kalachand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28761873313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Estimates</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhojak, Ankit</creatorcontrib><creatorcontrib>Surjeet Singh Choudhary</creatorcontrib><creatorcontrib>Shrivastava, Saurabh</creatorcontrib><creatorcontrib>Shuin, Kalachand</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhojak, Ankit</au><au>Surjeet Singh Choudhary</au><au>Shrivastava, Saurabh</au><au>Shuin, Kalachand</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(L^{p}-\)estimates for uncentered spherical averages and lacunary maximal functions</atitle><jtitle>arXiv.org</jtitle><date>2024-08-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain \(L^p\)-estimates for uncentered bilinear maximal functions for dimensions \(d\geq2\). Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove \(L^p\)-improving properties for single scale averaging operators and \(L^p\)-estimates for lacunary maximal functions in this context.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2876187331 |
source | Free E- Journals |
subjects | Estimates Operators (mathematics) |
title | (L^{p}-\)estimates for uncentered spherical averages and lacunary maximal functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(L%5E%7Bp%7D-%5C)estimates%20for%20uncentered%20spherical%20averages%20and%20lacunary%20maximal%20functions&rft.jtitle=arXiv.org&rft.au=Bhojak,%20Ankit&rft.date=2024-08-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2876187331%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876187331&rft_id=info:pmid/&rfr_iscdi=true |