(L^{p}-\)estimates for uncentered spherical averages and lacunary maximal functions

The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain \(L^p\)-estimates for uncentered bilinear maximal functions for dimensions \(d\geq2\). Moreover, we al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Bhojak, Ankit, Surjeet Singh Choudhary, Shrivastava, Saurabh, Shuin, Kalachand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary goal of this paper is to introduce bilinear analogues of uncentered spherical averages, Nikodym averages associated with spheres and the associated bilinear maximal functions. We obtain \(L^p\)-estimates for uncentered bilinear maximal functions for dimensions \(d\geq2\). Moreover, we also discuss the one-dimensional case. In the process of developing these results, we also establish new and interesting results in the linear case. In particular, we will prove \(L^p\)-improving properties for single scale averaging operators and \(L^p\)-estimates for lacunary maximal functions in this context.
ISSN:2331-8422