QE-BEV: Query Evolution for Bird's Eye View Object Detection in Varied Contexts
3D object detection plays a pivotal role in autonomous driving and robotics, demanding precise interpretation of Bird's Eye View (BEV) images. The dynamic nature of real-world environments necessitates the use of dynamic query mechanisms in 3D object detection to adaptively capture and process...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 3D object detection plays a pivotal role in autonomous driving and robotics, demanding precise interpretation of Bird's Eye View (BEV) images. The dynamic nature of real-world environments necessitates the use of dynamic query mechanisms in 3D object detection to adaptively capture and process the complex spatio-temporal relationships present in these scenes. However, prior implementations of dynamic queries have often faced difficulties in effectively leveraging these relationships, particularly when it comes to integrating temporal information in a computationally efficient manner. Addressing this limitation, we introduce a framework utilizing dynamic query evolution strategy, harnesses K-means clustering and Top-K attention mechanisms for refined spatio-temporal data processing. By dynamically segmenting the BEV space and prioritizing key features through Top-K attention, our model achieves a real-time, focused analysis of pertinent scene elements. Our extensive evaluation on the nuScenes and Waymo dataset showcases a marked improvement in detection accuracy, setting a new benchmark in the domain of query-based BEV object detection. Our dynamic query evolution strategy has the potential to push the boundaries of current BEV methods with enhanced adaptability and computational efficiency. Project page: https://github.com/Jiawei-Yao0812/QE-BEV |
---|---|
ISSN: | 2331-8422 |