QE-BEV: Query Evolution for Bird's Eye View Object Detection in Varied Contexts

3D object detection plays a pivotal role in autonomous driving and robotics, demanding precise interpretation of Bird's Eye View (BEV) images. The dynamic nature of real-world environments necessitates the use of dynamic query mechanisms in 3D object detection to adaptively capture and process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Yao, Jiawei, Lai, Yingxin, Kou, Hongrui, Wu, Tong, Liu, Ruixi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3D object detection plays a pivotal role in autonomous driving and robotics, demanding precise interpretation of Bird's Eye View (BEV) images. The dynamic nature of real-world environments necessitates the use of dynamic query mechanisms in 3D object detection to adaptively capture and process the complex spatio-temporal relationships present in these scenes. However, prior implementations of dynamic queries have often faced difficulties in effectively leveraging these relationships, particularly when it comes to integrating temporal information in a computationally efficient manner. Addressing this limitation, we introduce a framework utilizing dynamic query evolution strategy, harnesses K-means clustering and Top-K attention mechanisms for refined spatio-temporal data processing. By dynamically segmenting the BEV space and prioritizing key features through Top-K attention, our model achieves a real-time, focused analysis of pertinent scene elements. Our extensive evaluation on the nuScenes and Waymo dataset showcases a marked improvement in detection accuracy, setting a new benchmark in the domain of query-based BEV object detection. Our dynamic query evolution strategy has the potential to push the boundaries of current BEV methods with enhanced adaptability and computational efficiency. Project page: https://github.com/Jiawei-Yao0812/QE-BEV
ISSN:2331-8422