KMS states on

Let $C_c^{*}(\mathbb{N}^{2})$ be the universal $C^{*}$ -algebra generated by a semigroup of isometries $\{v_{(m,n)}\,:\, m,n \in \mathbb{N}\}$ whose range projections commute. We analyse the structure of KMS states on $C_{c}^{*}(\mathbb{N}^2)$ for the time evolution determined by a homomorphism $c\,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2023-09, Vol.65 (3), p.501-528
Hauptverfasser: Arjunan, Anbu, Sruthymurali, Sundar, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $C_c^{*}(\mathbb{N}^{2})$ be the universal $C^{*}$ -algebra generated by a semigroup of isometries $\{v_{(m,n)}\,:\, m,n \in \mathbb{N}\}$ whose range projections commute. We analyse the structure of KMS states on $C_{c}^{*}(\mathbb{N}^2)$ for the time evolution determined by a homomorphism $c\,:\,\mathbb{Z}^{2} \to \mathbb{R}$ . In contrast to the reduced version $C_{red}^{*}(\mathbb{N}^{2})$ , we show that the set of KMS states on $C_{c}^{*}(\mathbb{N}^{2})$ has a rich structure. In particular, we exhibit uncountably many extremal KMS states of type I, II and III.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089523000071