KMS states on
Let $C_c^{*}(\mathbb{N}^{2})$ be the universal $C^{*}$ -algebra generated by a semigroup of isometries $\{v_{(m,n)}\,:\, m,n \in \mathbb{N}\}$ whose range projections commute. We analyse the structure of KMS states on $C_{c}^{*}(\mathbb{N}^2)$ for the time evolution determined by a homomorphism $c\,...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2023-09, Vol.65 (3), p.501-528 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$C_c^{*}(\mathbb{N}^{2})$
be the universal
$C^{*}$
-algebra generated by a semigroup of isometries
$\{v_{(m,n)}\,:\, m,n \in \mathbb{N}\}$
whose range projections commute. We analyse the structure of KMS states on
$C_{c}^{*}(\mathbb{N}^2)$
for the time evolution determined by a homomorphism
$c\,:\,\mathbb{Z}^{2} \to \mathbb{R}$
. In contrast to the reduced version
$C_{red}^{*}(\mathbb{N}^{2})$
, we show that the set of KMS states on
$C_{c}^{*}(\mathbb{N}^{2})$
has a rich structure. In particular, we exhibit uncountably many extremal KMS states of type I, II and III. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089523000071 |