URGLQ: An Efficient Covariance Matrix Reconstruction Method for Robust Adaptive Beamforming

The computational complexity of the conventional adaptive beamformer is relatively large, and the performance degrades significantly due to both the model mismatch errors and the unwanted signals in received data. In this paper, an efficient unwanted signal removal and Gauss-Legendre quadra-ture (UR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2023-10, Vol.59 (5), p.1-11
Hauptverfasser: Luo, Tao, Chen, Peng, Cao, Zhenxin, Zheng, Le, Wang, Zongxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The computational complexity of the conventional adaptive beamformer is relatively large, and the performance degrades significantly due to both the model mismatch errors and the unwanted signals in received data. In this paper, an efficient unwanted signal removal and Gauss-Legendre quadra-ture (URGLQ)-based covariance matrix reconstruction method is proposed. Different from the prior covariance matrix recon-struction methods, a projection matrix is constructed to remove the unwanted signal from the received data, which improves the reconstruction accuracy of the covariance matrix. Considering that the computational complexity of most matrix reconstruction algorithms are relatively large due to the integral operation, we proposed a Gauss-Legendre quadrature-based method to approximate the integral operation while maintaining the accu-racy. Moreover, to improve the robustness of the beamformer, the mismatch in the desired steering vector is corrected by maximizing the output power of the beamformer under a constraint that the corrected steering vector cannot converge to any interference steering vector. Simulation results and prototype experiment demonstrate that the performance of the proposed beamformer outperforms the compared methods and is much closer to the optimal beamformer in different scenarios.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2023.3263386