Near-sunflowers and focal families

We present some problems and results about variants of sunflowers in families of sets. In particular, we improve an upper bound of the first author, Körner and Monti on the maximum number of binary vectors of length n so that every four of them are split into two pairs by some coordinate. We also pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2023-09, Vol.256 (1), p.21-33
Hauptverfasser: Alon, Noga, Holzman, Ron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present some problems and results about variants of sunflowers in families of sets. In particular, we improve an upper bound of the first author, Körner and Monti on the maximum number of binary vectors of length n so that every four of them are split into two pairs by some coordinate. We also propose a weaker version of the Erdős–Rado sunflower conjecture.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-023-2500-1