Covariant Riesz transform on differential forms for 1<p≤2

In this paper, we study L p -boundedness ( 1 < p ≤ 2 ) of the covariant Riesz transform on differential forms for a class of non-compact weighted Riemannian manifolds without assuming conditions on derivatives of curvature. We present in particular a local version of L p -boundedness of Riesz tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023-12, Vol.62 (9)
Hauptverfasser: Cheng, Li-Juan, Thalmaier, Anton, Wang, Feng-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study L p -boundedness ( 1 < p ≤ 2 ) of the covariant Riesz transform on differential forms for a class of non-compact weighted Riemannian manifolds without assuming conditions on derivatives of curvature. We present in particular a local version of L p -boundedness of Riesz transforms under two natural conditions, namely the curvature-dimension condition, and a lower bound on the Weitzenböck curvature endomorphism. As an application, the Calderón–Zygmund inequality for 1 < p ≤ 2 on weighted manifolds is derived under the curvature-dimension condition as hypothesis.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-023-02583-7