Recent Advances in Polymerization‐Induced Self‐Assembly (PISA) Syntheses in Non‐Polar Media
It is well‐known that polymerization‐induced self‐assembly (PISA) is a powerful and highly versatile technique for the rational synthesis of colloidal dispersions of diblock copolymer nanoparticles, including spheres, worms or vesicles. PISA can be conducted in water, polar solvents or non‐polar med...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-10, Vol.135 (42) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well‐known that polymerization‐induced self‐assembly (PISA) is a powerful and highly versatile technique for the rational synthesis of colloidal dispersions of diblock copolymer nanoparticles, including spheres, worms or vesicles. PISA can be conducted in water, polar solvents or non‐polar media. In principle, the latter formulations offer a wide range of potential commercial applications. However, there has been just one review focused on PISA syntheses in non‐polar media and this prior article was published in 2016. The purpose of the current review article is to summarize the various advances that have been reported since then. In particular, PISA syntheses conducted using reversible addition‐fragmentation chain‐transfer (RAFT) polymerization in various
n
‐alkanes, poly(α‐olefins), mineral oil, low‐viscosity silicone oils or supercritical CO
2
are discussed in detail. Selected formulations exhibit thermally induced worm‐to‐sphere or vesicle‐to‐worm morphological transitions and the rheological properties of various examples of worm gels in non‐polar media are summarized. Finally, visible absorption spectroscopy and small‐angle X‐ray scattering (SAXS) enable in situ monitoring of nanoparticle formation, while small‐angle neutron scattering (SANS) can be used to examine micelle fusion/fission and chain exchange mechanisms. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.202308372 |