The Yang–Mills–Higgs Functional on Complex Line Bundles: Γ-Convergence and the London Equation
We consider the Abelian Yang–Mills–Higgs functional, in the non-self dual scaling, on a complex line bundle over a closed Riemannian manifold of dimension n ≥ 3 . This functional is the natural generalisation of the Ginzburg–Landau model for superconductivity to the non-Euclidean setting. We prove a...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2023-12, Vol.247 (6), p.104, Article 104 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Abelian Yang–Mills–Higgs functional, in the non-self dual scaling, on a complex line bundle over a closed Riemannian manifold of dimension
n
≥
3
. This functional is the natural generalisation of the Ginzburg–Landau model for superconductivity to the non-Euclidean setting. We prove a
Γ
-convergence result, in the strongly repulsive limit, on the functional rescaled by the logarithm of the coupling parameter. As a corollary, we prove that the energy of minimisers concentrates on an area-minimising surface of dimension
n
-
2
, while the curvature of minimisers converges to a solution of the London equation. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-023-01933-1 |