The Yang–Mills–Higgs Functional on Complex Line Bundles: Γ-Convergence and the London Equation

We consider the Abelian Yang–Mills–Higgs functional, in the non-self dual scaling, on a complex line bundle over a closed Riemannian manifold of dimension n ≥ 3 . This functional is the natural generalisation of the Ginzburg–Landau model for superconductivity to the non-Euclidean setting. We prove a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2023-12, Vol.247 (6), p.104, Article 104
Hauptverfasser: Canevari, Giacomo, Dipasquale, Federico Luigi, Orlandi, Giandomenico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Abelian Yang–Mills–Higgs functional, in the non-self dual scaling, on a complex line bundle over a closed Riemannian manifold of dimension n ≥ 3 . This functional is the natural generalisation of the Ginzburg–Landau model for superconductivity to the non-Euclidean setting. We prove a Γ -convergence result, in the strongly repulsive limit, on the functional rescaled by the logarithm of the coupling parameter. As a corollary, we prove that the energy of minimisers concentrates on an area-minimising surface of dimension n - 2 , while the curvature of minimisers converges to a solution of the London equation.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-023-01933-1