A High-Frequency Planar-Configured Millimeter-Wave MIMO Antenna for Fifth-Generation NR Operations
This article presents a simple planar millimeter-wave (mm-wave) multiple input multiple output (MIMO) antenna with four closely spaced radiating elements. The antenna is intended to enhance the bandwidth for 5G new radio (NR) applications and also cover the industrial Ka-band (26.5-40 GHz), Q-band (...
Gespeichert in:
Veröffentlicht in: | International journal of RF and microwave computer-aided engineering 2023-09, Vol.2023, p.1-14 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a simple planar millimeter-wave (mm-wave) multiple input multiple output (MIMO) antenna with four closely spaced radiating elements. The antenna is intended to enhance the bandwidth for 5G new radio (NR) applications and also cover the industrial Ka-band (26.5-40 GHz), Q-band (30-50 GHz), and U-band (40-60 GHz) frequency ranges. The antenna is designed using Rogers RT/duroid 5880 substrate with a size of 25×26×1.6 mm3. The proposed antenna consists of four identical radiating elements with two of them positioned in a linear configuration facing each other, while the other two elements are placed opposite to the first two, which improves isolation between the elements. Across the entire operating frequency range (26-60 GHz), the antenna demonstrated excellent performance, including 34 GHz wide bandwidth, high isolation of >25 dB, nearly omnidirectional radiation patterns, high gain of 11.1 dB with a high radiation efficiency of 94%, low envelope correlation coefficient (ECC) of 0.0068, and high diversity gain (DG) of 9.967 dB. The simulated findings exhibit a strong positive correlation with the experimental results. The proposed MIMO antenna design is a promising solution for 5G NR applications. |
---|---|
ISSN: | 1096-4290 1099-047X |
DOI: | 10.1155/2023/9533725 |