Experimental and Theoretical Approach of Evaluating Chitosan Ferulic Acid Amide as an Effective Corrosion Inhibitor

Phenolic acid grafted chitosan has widespread drug delivery applications, as bio adsorbent, packing material, etc., due to its excellent antioxidant and antimicrobial properties. However, for the first time, the anticorrosive efficiency of ferulic acid modified chitosan has been investigated. The pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bio- and tribo-corrosion 2023-12, Vol.9 (4), Article 80
Hauptverfasser: Jessima, S. J. Hepziba Magie, Subhashini, S., Berisha, Avni, Mehmeti, Valbonë, Srikandan, Subramanian Sathy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phenolic acid grafted chitosan has widespread drug delivery applications, as bio adsorbent, packing material, etc., due to its excellent antioxidant and antimicrobial properties. However, for the first time, the anticorrosive efficiency of ferulic acid modified chitosan has been investigated. The prepared chitosan derivative is characterized using spectral methods, thermal analytical methods, surface charge, and particle size analysis. The evaluation of corrosion inhibition potential showed a highest value of 95.96% at 303 K. Thermodynamic activation and adsorption parameters endorse a mixed adsorption process involving an initial electrostatic interaction followed by chemisorption. Electrochemical studies gave results which agreed well with the gravimetric studies. Surface morphological studies were performed using contact angle measurements, FESEM, EDAX, AFM, optical profilometric and UV spectral techniques. Computational studies involving quantum chemical calculations, Monte Carlo and molecular dynamic simulation studies, and radial distribution function analysis are further done to validate the experimental results. Graphical Abstract
ISSN:2198-4220
2198-4239
DOI:10.1007/s40735-023-00796-z