A (2, 1)-Decomposition of Planar Graphs Without Intersecting 3-Cycles and Adjacent 4--Cycles

Let G be a graph. For two positive integers d and h , a ( d ,  h )- decomposition of G is a pair ( G ,  H ) such that H is a subgraph of G of maximum degree at most h and D is an acyclic orientation of G - E ( H ) of maximum out-degree at most d . A graph G is ( d ,  h )- decomposable if G has a ( d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2023-12, Vol.39 (6), Article 115
Hauptverfasser: Tian, Fangyu, Li, Xiangwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Graphs and combinatorics
container_volume 39
creator Tian, Fangyu
Li, Xiangwen
description Let G be a graph. For two positive integers d and h , a ( d ,  h )- decomposition of G is a pair ( G ,  H ) such that H is a subgraph of G of maximum degree at most h and D is an acyclic orientation of G - E ( H ) of maximum out-degree at most d . A graph G is ( d ,  h )- decomposable if G has a ( d ,  h )-decomposition. In this paper, we prove that every planar graph without intersecting 3-cycles and adjacent 4 - -cycles is (2, 1)-decomposable. As a corollary, we obtain that every planar graph without intersecting 3-cycles and adjacent 4 - -cycles has a matching M such that G - M is 2-degenerate and hence G - M is DP-3-colorable and Alon-Tarsi number of G - M is at most 3.
doi_str_mv 10.1007/s00373-023-02708-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873783959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873783959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-596e6dc6e33d0fb0f32c9b7f65d3c930b7fcf5f3ae373cdabcd26a387f150a7b3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwEvCkYnm_08lqq1IOhB8SQhm03aLW2yJim0_8bf4i8zdQvePAwzDO-9efMQOqdwQwGKWw_ACkYg2VUBJdkcoAFNWUayiqaHaAAVpQQorY7RifcLAMhoCgP0McKXyfX3F70id0raVWd9G1prsNX4ZSmMcHjiRDf3-L0Nc7sOeGqCcl7J0JoZZmS8lUvlsTANHjULIZUJOCX79Sk60mLp1dm-D9Hbw_3r-JE8PU-m49ETkdFsiB5zlTcyV4w1oGvQLJFVXeg8a5isGMRR6kwzoeKTshG1bJJcsLLQNANR1GyILnrdztnPtfKBL-zamXiSJ2XBipJVWRVRSY-SznrvlOada1fCbTkFvouR9zHyGCP_jZFvIon1JB_BZqbcn_Q_rB_biXWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873783959</pqid></control><display><type>article</type><title>A (2, 1)-Decomposition of Planar Graphs Without Intersecting 3-Cycles and Adjacent 4--Cycles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tian, Fangyu ; Li, Xiangwen</creator><creatorcontrib>Tian, Fangyu ; Li, Xiangwen</creatorcontrib><description>Let G be a graph. For two positive integers d and h , a ( d ,  h )- decomposition of G is a pair ( G ,  H ) such that H is a subgraph of G of maximum degree at most h and D is an acyclic orientation of G - E ( H ) of maximum out-degree at most d . A graph G is ( d ,  h )- decomposable if G has a ( d ,  h )-decomposition. In this paper, we prove that every planar graph without intersecting 3-cycles and adjacent 4 - -cycles is (2, 1)-decomposable. As a corollary, we obtain that every planar graph without intersecting 3-cycles and adjacent 4 - -cycles has a matching M such that G - M is 2-degenerate and hence G - M is DP-3-colorable and Alon-Tarsi number of G - M is at most 3.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-023-02708-x</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Combinatorics ; Decomposition ; Engineering Design ; Graph theory ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Graphs and combinatorics, 2023-12, Vol.39 (6), Article 115</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-596e6dc6e33d0fb0f32c9b7f65d3c930b7fcf5f3ae373cdabcd26a387f150a7b3</cites><orcidid>0000-0001-9328-0766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-023-02708-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-023-02708-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Tian, Fangyu</creatorcontrib><creatorcontrib>Li, Xiangwen</creatorcontrib><title>A (2, 1)-Decomposition of Planar Graphs Without Intersecting 3-Cycles and Adjacent 4--Cycles</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>Let G be a graph. For two positive integers d and h , a ( d ,  h )- decomposition of G is a pair ( G ,  H ) such that H is a subgraph of G of maximum degree at most h and D is an acyclic orientation of G - E ( H ) of maximum out-degree at most d . A graph G is ( d ,  h )- decomposable if G has a ( d ,  h )-decomposition. In this paper, we prove that every planar graph without intersecting 3-cycles and adjacent 4 - -cycles is (2, 1)-decomposable. As a corollary, we obtain that every planar graph without intersecting 3-cycles and adjacent 4 - -cycles has a matching M such that G - M is 2-degenerate and hence G - M is DP-3-colorable and Alon-Tarsi number of G - M is at most 3.</description><subject>Combinatorics</subject><subject>Decomposition</subject><subject>Engineering Design</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwEvCkYnm_08lqq1IOhB8SQhm03aLW2yJim0_8bf4i8zdQvePAwzDO-9efMQOqdwQwGKWw_ACkYg2VUBJdkcoAFNWUayiqaHaAAVpQQorY7RifcLAMhoCgP0McKXyfX3F70id0raVWd9G1prsNX4ZSmMcHjiRDf3-L0Nc7sOeGqCcl7J0JoZZmS8lUvlsTANHjULIZUJOCX79Sk60mLp1dm-D9Hbw_3r-JE8PU-m49ETkdFsiB5zlTcyV4w1oGvQLJFVXeg8a5isGMRR6kwzoeKTshG1bJJcsLLQNANR1GyILnrdztnPtfKBL-zamXiSJ2XBipJVWRVRSY-SznrvlOada1fCbTkFvouR9zHyGCP_jZFvIon1JB_BZqbcn_Q_rB_biXWc</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Tian, Fangyu</creator><creator>Li, Xiangwen</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9328-0766</orcidid></search><sort><creationdate>20231201</creationdate><title>A (2, 1)-Decomposition of Planar Graphs Without Intersecting 3-Cycles and Adjacent 4--Cycles</title><author>Tian, Fangyu ; Li, Xiangwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-596e6dc6e33d0fb0f32c9b7f65d3c930b7fcf5f3ae373cdabcd26a387f150a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combinatorics</topic><topic>Decomposition</topic><topic>Engineering Design</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Fangyu</creatorcontrib><creatorcontrib>Li, Xiangwen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Fangyu</au><au>Li, Xiangwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A (2, 1)-Decomposition of Planar Graphs Without Intersecting 3-Cycles and Adjacent 4--Cycles</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><artnum>115</artnum><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Let G be a graph. For two positive integers d and h , a ( d ,  h )- decomposition of G is a pair ( G ,  H ) such that H is a subgraph of G of maximum degree at most h and D is an acyclic orientation of G - E ( H ) of maximum out-degree at most d . A graph G is ( d ,  h )- decomposable if G has a ( d ,  h )-decomposition. In this paper, we prove that every planar graph without intersecting 3-cycles and adjacent 4 - -cycles is (2, 1)-decomposable. As a corollary, we obtain that every planar graph without intersecting 3-cycles and adjacent 4 - -cycles has a matching M such that G - M is 2-degenerate and hence G - M is DP-3-colorable and Alon-Tarsi number of G - M is at most 3.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-023-02708-x</doi><orcidid>https://orcid.org/0000-0001-9328-0766</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0911-0119
ispartof Graphs and combinatorics, 2023-12, Vol.39 (6), Article 115
issn 0911-0119
1435-5914
language eng
recordid cdi_proquest_journals_2873783959
source SpringerLink Journals - AutoHoldings
subjects Combinatorics
Decomposition
Engineering Design
Graph theory
Mathematics
Mathematics and Statistics
Original Paper
title A (2, 1)-Decomposition of Planar Graphs Without Intersecting 3-Cycles and Adjacent 4--Cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20(2,%C2%A01)-Decomposition%20of%20Planar%20Graphs%20Without%20Intersecting%203-Cycles%20and%20Adjacent%204--Cycles&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Tian,%20Fangyu&rft.date=2023-12-01&rft.volume=39&rft.issue=6&rft.artnum=115&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-023-02708-x&rft_dat=%3Cproquest_cross%3E2873783959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873783959&rft_id=info:pmid/&rfr_iscdi=true