A (2, 1)-Decomposition of Planar Graphs Without Intersecting 3-Cycles and Adjacent 4--Cycles

Let G be a graph. For two positive integers d and h , a ( d ,  h )- decomposition of G is a pair ( G ,  H ) such that H is a subgraph of G of maximum degree at most h and D is an acyclic orientation of G - E ( H ) of maximum out-degree at most d . A graph G is ( d ,  h )- decomposable if G has a ( d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2023-12, Vol.39 (6), Article 115
Hauptverfasser: Tian, Fangyu, Li, Xiangwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a graph. For two positive integers d and h , a ( d ,  h )- decomposition of G is a pair ( G ,  H ) such that H is a subgraph of G of maximum degree at most h and D is an acyclic orientation of G - E ( H ) of maximum out-degree at most d . A graph G is ( d ,  h )- decomposable if G has a ( d ,  h )-decomposition. In this paper, we prove that every planar graph without intersecting 3-cycles and adjacent 4 - -cycles is (2, 1)-decomposable. As a corollary, we obtain that every planar graph without intersecting 3-cycles and adjacent 4 - -cycles has a matching M such that G - M is 2-degenerate and hence G - M is DP-3-colorable and Alon-Tarsi number of G - M is at most 3.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-023-02708-x