Distributed-Proof-of-Sense: Blockchain Consensus Mechanisms for Detecting Spectrum Access Violations of the Radio Spectrum

The exponential growth in connected devices with Internet-of-Things (IoT) and next-generation wireless networks requires more advanced and dynamic spectrum access mechanisms. Blockchain-based approaches to Dynamic Spectrum Access (DSA) seem efficient and robust due to their inherited characteristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive communications and networking 2023-10, Vol.9 (5), p.1-1
Hauptverfasser: Fernando, Pramitha, Dadallage, Keshawa, Gamage, Tharindu, Seneviratne, Chathura, Braeken, An, Madanayake, Arjuna, Liyanage, Madhusanka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exponential growth in connected devices with Internet-of-Things (IoT) and next-generation wireless networks requires more advanced and dynamic spectrum access mechanisms. Blockchain-based approaches to Dynamic Spectrum Access (DSA) seem efficient and robust due to their inherited characteristics such as decentralization, immutability, and transparency. However, conventional consensus mechanisms used in blockchain networks are expensive to be used due to the cost, processing, and energy constraints. Moreover, addressing spectrum violations (i.e., unauthorized access to the spectrum) is not well-discussed in most blockchain-based DSA systems in the literature. In this work, we propose a newly tailored energy-efficient consensus mechanism called "Distributed-Proof-of-Sense (DPoS)" that is specially designed to enable DSA and detect spectrum violations. The proposed consensus algorithm motivates blockchain miners to perform spectrum sensing, which leads to the collection of a full spectrum of sensing data. An elliptic curve cryptography-based zero-knowledge proof is used as the core of the proposed mechanism. We use MATLAB simulations to analyze the performance of the consensus mechanism and implement several consensus algorithms in a microprocessor to highlight the benefits of adopting the proposed system.
ISSN:2332-7731
2332-7731
DOI:10.1109/TCCN.2023.3291366