Compactness results in conformal deformations of Riemannian metrics on manifolds with boundaries

This paper is devoted to the study of a problem arising from a geometric context, namely the conformal deformation of a Riemannian metric to a scalar flat one having constant mean curvature on the boundary. By means of blow-up analysis techniques and the Positive Mass Theorem, we show that on locall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2003-05, Vol.244 (1), p.175-210
Hauptverfasser: Felli, V., Ahmedou, M. Ould
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the study of a problem arising from a geometric context, namely the conformal deformation of a Riemannian metric to a scalar flat one having constant mean curvature on the boundary. By means of blow-up analysis techniques and the Positive Mass Theorem, we show that on locally conformally flat manifolds with umbilic boundary all metrics stay in a compact set with respect to the C2-norm and the total Leray-Schauder degree of all solutions is equal to -1. Then we deduce from this compactness result the existence of at least one solution to our problem.Mathematics Subject Classification (2000): 35J60, 53C21, 58G30
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-002-0486-7