Escape components of McMullen maps
We consider the McMullen maps $f_{\unicode{x3bb} }(z)=z^{n}+\unicode{x3bb} z^{-n}$ with $\unicode{x3bb} \in \mathbb {C}^{*}$ and $n \geq 3$ . We prove that the closures of escape hyperbolic components are pairwise disjoint and the boundaries of all bounded escape components (the McMullen domain and...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2023-11, Vol.43 (11), p.3745-3775 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the McMullen maps
$f_{\unicode{x3bb} }(z)=z^{n}+\unicode{x3bb} z^{-n}$
with
$\unicode{x3bb} \in \mathbb {C}^{*}$
and
$n \geq 3$
. We prove that the closures of escape hyperbolic components are pairwise disjoint and the boundaries of all bounded escape components (the McMullen domain and Sierpiński holes) are quasi-circles with Hausdorff dimension strictly between
$1$
and
$2$
. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2022.84 |