Optimal Control of Nonlocal Continuity Equations: Numerical Solution

The paper addresses an optimal ensemble control problem for nonlocal continuity equations on the space of probability measures. We admit the general nonlinear cost functional, and an option to directly control the nonlocal terms of the driving vector field. For this problem, we design a descent meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2023-12, Vol.88 (3), p.86, Article 86
Hauptverfasser: Chertovskih, Roman, Pogodaev, Nikolay, Staritsyn, Maxim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper addresses an optimal ensemble control problem for nonlocal continuity equations on the space of probability measures. We admit the general nonlinear cost functional, and an option to directly control the nonlocal terms of the driving vector field. For this problem, we design a descent method based on Pontryagin’s maximum principle (PMP). To this end, we derive a new form of PMP with a decoupled Hamiltonian system. Specifically, we extract the adjoint system of linear nonlocal balance laws on the space of signed measures and prove its well-posedness. As an implementation of the designed descent method, we propose an indirect deterministic numeric algorithm with backtracking. We prove the convergence of the algorithm and illustrate its modus operandi by treating a simple case involving a Kuramoto-type model of a population of interacting oscillators.
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-023-10062-w