A generalized spectral correspondence
We establish a strong categorical correspondence between isomorphism classes of sheaves of arbitrary rank on one algebraic curve and twisted pairs on another algebraic curve. In a particular application, we realize a generic elliptic curve as a spectral cover of the complex projective line \(\mathbb...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Banerjee, Kuntal Rayan, Steven |
description | We establish a strong categorical correspondence between isomorphism classes of sheaves of arbitrary rank on one algebraic curve and twisted pairs on another algebraic curve. In a particular application, we realize a generic elliptic curve as a spectral cover of the complex projective line \(\mathbb{P}^1\) and then construct examples of semistable co-Higgs bundles over \(\mathbb{P}^1\) as pushforwards of locally-free sheaves of certain small ranks over the elliptic curve. By appealing to a composite push-pull projection formula, we conjecture an iterated version of the spectral correspondence. We prove this conjecture for a particular class of spectral covers of \(\mathbb {P}^1\). The proof relies upon a classification of Galois groups into primitive and imprimitive types. In this context, we revisit a century-old theorem of J.F. Ritt. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2873068950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873068950</sourcerecordid><originalsourceid>FETCH-proquest_journals_28730689503</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdVRIT81LLUrMyaxKTVEoLkhNLgFyFJLzi4pSiwvy81JS85JTeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjC3NjAzMLS1MCYOFUAJ40vbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873068950</pqid></control><display><type>article</type><title>A generalized spectral correspondence</title><source>Free E- Journals</source><creator>Banerjee, Kuntal ; Rayan, Steven</creator><creatorcontrib>Banerjee, Kuntal ; Rayan, Steven</creatorcontrib><description>We establish a strong categorical correspondence between isomorphism classes of sheaves of arbitrary rank on one algebraic curve and twisted pairs on another algebraic curve. In a particular application, we realize a generic elliptic curve as a spectral cover of the complex projective line \(\mathbb{P}^1\) and then construct examples of semistable co-Higgs bundles over \(\mathbb{P}^1\) as pushforwards of locally-free sheaves of certain small ranks over the elliptic curve. By appealing to a composite push-pull projection formula, we conjecture an iterated version of the spectral correspondence. We prove this conjecture for a particular class of spectral covers of \(\mathbb {P}^1\). The proof relies upon a classification of Galois groups into primitive and imprimitive types. In this context, we revisit a century-old theorem of J.F. Ritt.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Curves ; Isomorphism ; Sheaves</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Banerjee, Kuntal</creatorcontrib><creatorcontrib>Rayan, Steven</creatorcontrib><title>A generalized spectral correspondence</title><title>arXiv.org</title><description>We establish a strong categorical correspondence between isomorphism classes of sheaves of arbitrary rank on one algebraic curve and twisted pairs on another algebraic curve. In a particular application, we realize a generic elliptic curve as a spectral cover of the complex projective line \(\mathbb{P}^1\) and then construct examples of semistable co-Higgs bundles over \(\mathbb{P}^1\) as pushforwards of locally-free sheaves of certain small ranks over the elliptic curve. By appealing to a composite push-pull projection formula, we conjecture an iterated version of the spectral correspondence. We prove this conjecture for a particular class of spectral covers of \(\mathbb {P}^1\). The proof relies upon a classification of Galois groups into primitive and imprimitive types. In this context, we revisit a century-old theorem of J.F. Ritt.</description><subject>Algebra</subject><subject>Curves</subject><subject>Isomorphism</subject><subject>Sheaves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdVRIT81LLUrMyaxKTVEoLkhNLgFyFJLzi4pSiwvy81JS85JTeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjC3NjAzMLS1MCYOFUAJ40vbQ</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Banerjee, Kuntal</creator><creator>Rayan, Steven</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231003</creationdate><title>A generalized spectral correspondence</title><author>Banerjee, Kuntal ; Rayan, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28730689503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Curves</topic><topic>Isomorphism</topic><topic>Sheaves</topic><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Kuntal</creatorcontrib><creatorcontrib>Rayan, Steven</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Kuntal</au><au>Rayan, Steven</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A generalized spectral correspondence</atitle><jtitle>arXiv.org</jtitle><date>2023-10-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We establish a strong categorical correspondence between isomorphism classes of sheaves of arbitrary rank on one algebraic curve and twisted pairs on another algebraic curve. In a particular application, we realize a generic elliptic curve as a spectral cover of the complex projective line \(\mathbb{P}^1\) and then construct examples of semistable co-Higgs bundles over \(\mathbb{P}^1\) as pushforwards of locally-free sheaves of certain small ranks over the elliptic curve. By appealing to a composite push-pull projection formula, we conjecture an iterated version of the spectral correspondence. We prove this conjecture for a particular class of spectral covers of \(\mathbb {P}^1\). The proof relies upon a classification of Galois groups into primitive and imprimitive types. In this context, we revisit a century-old theorem of J.F. Ritt.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2873068950 |
source | Free E- Journals |
subjects | Algebra Curves Isomorphism Sheaves |
title | A generalized spectral correspondence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20generalized%20spectral%20correspondence&rft.jtitle=arXiv.org&rft.au=Banerjee,%20Kuntal&rft.date=2023-10-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2873068950%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873068950&rft_id=info:pmid/&rfr_iscdi=true |