A generalized spectral correspondence

We establish a strong categorical correspondence between isomorphism classes of sheaves of arbitrary rank on one algebraic curve and twisted pairs on another algebraic curve. In a particular application, we realize a generic elliptic curve as a spectral cover of the complex projective line \(\mathbb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Banerjee, Kuntal, Rayan, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a strong categorical correspondence between isomorphism classes of sheaves of arbitrary rank on one algebraic curve and twisted pairs on another algebraic curve. In a particular application, we realize a generic elliptic curve as a spectral cover of the complex projective line \(\mathbb{P}^1\) and then construct examples of semistable co-Higgs bundles over \(\mathbb{P}^1\) as pushforwards of locally-free sheaves of certain small ranks over the elliptic curve. By appealing to a composite push-pull projection formula, we conjecture an iterated version of the spectral correspondence. We prove this conjecture for a particular class of spectral covers of \(\mathbb {P}^1\). The proof relies upon a classification of Galois groups into primitive and imprimitive types. In this context, we revisit a century-old theorem of J.F. Ritt.
ISSN:2331-8422