A generalized spectral correspondence
We establish a strong categorical correspondence between isomorphism classes of sheaves of arbitrary rank on one algebraic curve and twisted pairs on another algebraic curve. In a particular application, we realize a generic elliptic curve as a spectral cover of the complex projective line \(\mathbb...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a strong categorical correspondence between isomorphism classes of sheaves of arbitrary rank on one algebraic curve and twisted pairs on another algebraic curve. In a particular application, we realize a generic elliptic curve as a spectral cover of the complex projective line \(\mathbb{P}^1\) and then construct examples of semistable co-Higgs bundles over \(\mathbb{P}^1\) as pushforwards of locally-free sheaves of certain small ranks over the elliptic curve. By appealing to a composite push-pull projection formula, we conjecture an iterated version of the spectral correspondence. We prove this conjecture for a particular class of spectral covers of \(\mathbb {P}^1\). The proof relies upon a classification of Galois groups into primitive and imprimitive types. In this context, we revisit a century-old theorem of J.F. Ritt. |
---|---|
ISSN: | 2331-8422 |