The sharp bound of the third order Hankel determinant for inverse of Ozaki close-to-convex functions

Let \(f\) be analytic in the unit disk \(\mathbb{D}= \{z \in \mathbb{C}~:~ |z| < 1\}\), and \(\mathcal{S}\) be the subclass of normalized univalent functions given by \(f(z)=\sum_{n=1}^{\infty}a_{n}z^{n},~a_{1}:=1\) for \(z \in\mathbb{D}\). We present the sharp bounds of the third-order Hankel de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Rath, Biswajit, K Sanjay Kumar, Krishna, D Vamshee
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(f\) be analytic in the unit disk \(\mathbb{D}= \{z \in \mathbb{C}~:~ |z| < 1\}\), and \(\mathcal{S}\) be the subclass of normalized univalent functions given by \(f(z)=\sum_{n=1}^{\infty}a_{n}z^{n},~a_{1}:=1\) for \(z \in\mathbb{D}\). We present the sharp bounds of the third-order Hankel determinant for inverse functions when it belongs to of the class of Ozaki close-to-convex.
ISSN:2331-8422