Modified Subgradient Extragradient Methods for Solving Bilevel Split Variational Inequality Problems in Hilbert Spaces

In this work, we propose a new method for solving a bilevel split variational inequality problem (BSVIP) in Hilbert spaces. The proposed method is inspired by the subgradient extragradient method for solving a monotone variational inequality problem. A strong convergence theorem for an algorithm for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica vietnamica 2023-09, Vol.48 (3), p.459-478
Hauptverfasser: Van, Le Huynh My, Thuy, Dang Le, Anh, Tran Viet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we propose a new method for solving a bilevel split variational inequality problem (BSVIP) in Hilbert spaces. The proposed method is inspired by the subgradient extragradient method for solving a monotone variational inequality problem. A strong convergence theorem for an algorithm for solving such a BSVIP is proved without knowing any information of the Lipschitz and strongly monotone constants of the mappings. Moreover, we do not require any prior information regarding the norm of the given bounded linear operator. Special cases are considered. Two numerical examples are given to illustrate the performance of our algorithm.
ISSN:0251-4184
2315-4144
DOI:10.1007/s40306-023-00508-2